SUMMARY REPORT
138 ACORN DRIVE (FORMERLY 391 ACORN DRIVE)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy
Naval Facilities Engineering Command, Mid-Atlantic
9324 Virginia Avenue
Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095 SUMMARY REPORT
138 ACORN DRIVE (FORMERLY 391 ACORN DRIVE)
LAUREL BAY MILITARY HOUSING AREA
MARINE CORPS AIR STATION BEAUFORT
BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy
Naval Facilities Engineering Command, Mid- Atlantic
9324 Virginia Avenue
Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 21380

Contract Number: N62470-14-D-9016

CTO WE52

JUNE 2021

Table of Contents

1.0	INTRODUC	TION
1.1		ND INFORMATION1
1.2	UST REMO	VAL AND ASSESSMENT PROCESS
2.0	SAMPLING	ACTIVITIES AND RESULTS 3
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 3.0	SOIL ANALY INITIAL GR INITIAL GR PERMANENT PERMANENT LONG TERM LONG TERM PROPERTY	VAL AND SOIL SAMPLING 4 /TICAL RESULTS 4 OUNDWATER SAMPLING 5 OUNDWATER ANALYTICAL RESULTS 5 I WELL GROUNDWATER SAMPLING 6 I WELL GROUNDWATER ANALYTICAL RESULTS 6 I MONITORING 7 I MONITORING ANALYTICAL RESULTS 7 STATUS 7 ES 8
0		
		Tables
Table	1	Laboratory Analytical Results - Soil
Table	2	Laboratory Analytical Results - Initial Groundwater
Table	3	Laboratory Analytical Results - Permanent Monitoring Well Groundwater
Table	4	Laboratory Analytical Results - Long Term Monitoring
		Appendices
Appen	dix A	Multi-Media Selection Process for LBMH
Appendix B UST Assessment Report		UST Assessment Report
Appen	dix C	Laboratory Analytical Report - Initial Groundwater
Appen	dix D	Analytical Data - Permanent Well Groundwater
Appen	dix E	Historical Groundwater Analytical Results
Appen	dix F	Regulatory Correspondence

List of Acronyms

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CTO Contract Task Order

COPC constituents of potential concern

ft feet

IDIQ Indefinite Delivery, Indefinite Quantity

IGWA Initial Groundwater Assessment

JV Joint Venture

LBMH Laurel Bay Military Housing

LTM long-term monitoring
MCAS Marine Corps Air Station

NAVFAC Mid-Lant Naval Facilities Engineering Command Mid-Atlantic

NFA No Further Action

PAH polynuclear aromatic hydrocarbon QAPP Quality Assurance Program Plan

RBSL risk-based screening level

SCDHEC South Carolina Department of Health and Environmental Control

Site LBMH area at MCAS Beaufort, South Carolina

UFP SAP Uniform Federal Policy Sampling and Analysis Plan USEPA United States Environmental Protection Agency

UST underground storage tank
VISL vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 138 Acorn Drive (Formerly 391 Acorn Drive). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil UST. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential heating oil USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with the SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management Division* (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels

used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The IGWA sampling process utilizes temporary groundwater sampling points that are typically installed and sampled within the same day. The intent of the sampling point is to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations may require additional delineation of COPCs in groundwater. These sampling points are not subjected to the same installation standards as permanent monitoring wells and, as such; the data obtained from the IGWA wells can sometimes be biased high and is considered preliminary data. In order to confirm the presence of any impact to groundwater, a permanent well is installed where IGWA sampling has indicated the presence of COPCs is in excess of the SCDHEC RBSLs for groundwater. If COPCs are found to be present in the permanent well, additional permanent wells are installed to delineate the extent of impact to groundwater and a sampling program (long-term monitoring [LTM]) is established. LTM is conducted at the property until COPC concentrations in groundwater sampled from all permanent monitoring wells are less than the SCDHEC RBSLs for three or more consecutive sampling events. Groundwater analytical results from permanent wells are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 138 Acorn Drive (Formerly 391 Acorn Drive). The sampling activities at 138 Acorn Drive (Formerly 391 Acorn Drive) comprised a soil investigation, IGWA sampling, installation and sampling of four permanent monitoring wells and LTM sampling. Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 391 Acorn Drive* (MCAS Beaufort, 2008). The UST Assessment Report is provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the *Investigation of Ground Water at Leaking Heating Oil UST Sites* (Pandey Environmental LLC, 2008). The laboratory report that includes the pertinent IGWA analytical results for this site is presented in Appendix C. Details regarding the permanent well installations and initial sampling activities at this site are provided in the *Report of Findings for*

Laurel Bay Military Housing Area Investigation of Potential Impacts to Groundwater from Former Heating Oil Underground Storage Tanks (Tetra Tech NUS, Inc, 2010). The laboratory reports that includes the pertinent groundwater analytical results for this site are presented in Appendix D. Details regarding the LTM activities to date at this site are provided in the 2015 Groundwater Monitoring Report (Resolution Consultants, 2015). A comprehensive table of the historical groundwater analytical results for all permanent monitoring wells at the site through 2015 is presented in Appendix E.

2.1 UST Removal and Soil Sampling

On June 28, 2007, a single 280 gallon heating oil UST was removed from the front yard at 138 Acorn Drive (Formerly 391 Acorn Drive). The former UST location is indicated on the figures of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 5'3" bgs and a single soil sample was collected from that depth. An additional soil sample was collected from the side of the excavation. The samples were collected from the fill port side of the former USTs to represent a worst case scenario and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data reports are included in the UST Assessment Report presented in Appendix B. The laboratory analytical data reports include the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or No Further Action [NFA]) for the property. The soil results collected from the former UST location at 138 Acorn Drive (Formerly 391 Acorn Drive) were greater than the SCDHEC RBSLs, which indicated further investigation was required. In a letter dated September 10, 2008, SCDHEC requested an IGWA for 138 Acorn Drive (Formerly 391 Acorn Drive) to

determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letter is provided in Appendix F.

2.3 Initial Groundwater Sampling

On July 29, 2008, a single temporary monitoring well was installed at 138 Acorn Drive (Formerly 391 Acorn Drive), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST. The former UST location is indicated on the figures of the UST Assessment Report (Appendix B). Further details are provided in the *Investigation of Ground Water at Leaking Heating Oil UST Sites* (Pandey Environmental LLC, 2008).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporary monitoring well. Following well installation, a groundwater sample was collected using screen point sampling methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary well was abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71.H-I (SCDHEC, 2016). Field forms are provided in the *Investigation of Ground Water at Leaking Heating Oil UST Sites* (Pandey Environmental LLC, 2008).

2.4 Initial Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data report is included in Appendix C.

The groundwater results collected from 138 Acorn Drive (Formerly 391 Acorn Drive) were greater than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated further investigation was required. In a letter dated December 30, 2008, SCDHEC requested a permanent well be installed for 138 Acorn Drive (Formerly 391 Acorn Drive) to confirm the impact to groundwater detected in the temporary well sample. SCDHEC's request letter is provided in Appendix F.

2.5 Permanent Well Groundwater Sampling

In February 2010, four permanent monitoring wells were installed at 138 Acorn Drive (Formerly 391 Acorn Drive), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, a permanent monitoring well, MW115, was placed in the same general location as the former heating oil UST and the IGWA sample location. The former UST location is indicated on the figures of the UST Assessment Report (Appendix B). Three additional permanent wells (MW113, MW114 and MW116) were also installed around the property at 138 Acorn Drive (Formerly 391 Acorn Drive) to delineate potential contamination. Further details are provided in the *Report of Findings for Laurel Bay Military Housing Area Investigation of Potential Impacts to Groundwater from Former Heating Oil Underground Storage Tanks* (Tetra Tech NUS, Inc, 2010).

The sampling strategy for this phase of the investigation required an initial sampling event of the permanent monitoring wells. Following well installation and development, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Field forms are provided in the *Report of Findings for Laurel Bay Military Housing Area Investigation of Potential Impacts to Groundwater from Former Heating Oil Underground Storage Tanks* (Tetra Tech NUS, Inc, 2010).

2.6 Permanent Well Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 3. A copy of the analytical data are included in Appendix D.

The groundwater results collected from 138 Acorn Drive (Formerly 391 Acorn Drive) were less than the SCDHEC RBSLs (Table 3), however, it was recommended that the permanent monitoring wells should continue to be sampled as downgradient wells for an adjacent property. SCDHEC agreed with the recommendation to sample the permanent monitoring wells at 138 Acorn Drive (Formerly 391 Acorn Drive) in a letter dated April 6, 2011. The groundwater results collected the following year from 138 Acorn Drive (Formerly 391 Acorn Drive) at MW116 were greater than the SCDHEC RBSLs, which indicated that further investigation was required. In a letter dated July 5, 2012, SCDHEC requested that LTM be carried out for 138 Acorn Drive (Formerly 391 Acorn Drive) to continue to monitor the impact to groundwater detected in the permanent well sample (MW116). SCDHEC's request letters are provided in Appendix F.

2.7 Long Term Monitoring

The LTM program at 138 Acorn Drive (Formerly 391 Acorn Drive) consisted of annual groundwater sampling at the four permanent monitoring wells. LTM sampling activities were conducted in 2011, and then annually from 2013 until 2015 at the referenced site. The latest groundwater sampling details are provided in the *2015 Groundwater Monitoring Report* (Resolution Consultants, 2015).

The sampling strategy for this phase of the investigation required annual LTM sampling of the permanent wells until an optimized monitoring strategy (e.g., reduced COPCs, reduced sampling frequency, reduce number of wells, etc.) or NFA determination could made for the site. During each LTM sampling event, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Field forms from the most recent sampling event at 138 Acorn Drive (Formerly 391 Acorn Drive) are provided in the *2015 Groundwater Monitoring Report* (Resolution Consultants, 2015).

2.8 Long Term Monitoring Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 4. A comprehensive table of the historical groundwater analytical results for all permanent monitoring wells at the site through 2015 is presented in Appendix E. The associated laboratory analytical data reports are located in each of the annual LBMH groundwater monitoring reports.

The groundwater results collected from 138 Acorn Drive (Formerly 391 Acorn Drive) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 4) during the 2013, 2014 and 2015 groundwater sampling events. This indicated that the groundwater was no longer impacted by COPCs associated with the former UST at concentrations that may present a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for groundwater collected from the permanent monitoring wells during the three most recent sampling events, SCDHEC made the determination that NFA was required for 138 Acorn Drive (Formerly 391 Acorn Drive). The NFA determination for groundwater was obtained in a letter dated February 22, 2016. SCDHEC's letter is provided in Appendix F.

2.7 Long Term Monitoring

The LTM program at 138 Acorn Drive (Formerly 391 Acorn Drive) consisted of annual groundwater sampling at the three permanent monitoring wells. LTM sampling activities were conducted in 2011, and then annually from 2013 until 2015 at the referenced site. The latest groundwater sampling details are provided in the *2015 Groundwater Monitoring Report* (Resolution Consultants, 2015).

The sampling strategy for this phase of the investigation required annual LTM sampling of the permanent wells until an optimized monitoring strategy (e.g., reduced COPCs, reduced sampling frequency, reduce number of wells, etc.) or NFA determination could made for the site. During each LTM sampling event, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Field forms from the most recent sampling event at 138 Acorn Drive (Formerly 391 Acorn Drive) are provided in the *2015 Groundwater Monitoring Report* (Resolution Consultants, 2015).

2.8 Long Term Monitoring Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 4. A comprehensive table of the historical groundwater analytical results for all permanent monitoring wells at the site through 2015 is presented in Appendix E. The associated laboratory analytical data reports are located in each of the annual LBMH groundwater monitoring reports.

The groundwater results collected from 138 Acorn Drive (Formerly 391 Acorn Drive) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 4) during the 2013, 2014 and 2015 groundwater sampling events. This indicated that the groundwater was no longer impacted by COPCs associated with the former UST at concentrations that may present a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for groundwater collected from the permanent monitoring wells during the three most recent sampling events, SCDHEC made the determination that NFA was required for 138 Acorn Drive (Formerly 391 Acorn Drive). The NFA determination for groundwater was obtained in a letter dated February 22, 2016. SCDHEC's letter is provided in Appendix F.

4.0 REFERENCES

- Marine Corps Air Station Beaufort, 2008. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 391 Acorn Drive, Laurel Bay Military Housing Area, January 2008.
- PANDEY Environmental, LLC, 2008. *Investigation of Ground Water at Leaking Heating Oil UST Sites for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina,* November 2008.
- Resolution Consultants, 2015. 2015 Groundwater Monitoring Report for Laurel Bay Military Housing Area, Long-Term Monitoring (LTM), Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina, December 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.
- South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.

Summary Report 138 Acorn Drive (Formerly 391 Acorn Drive) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

Tetra Tech NUS, Inc, 2010. *Report of Findings for Laurel Bay Military Housing Area Investigation of Potential Impacts to Groundwater from Former Heating Oil Underground Storage Tanks*, July 2010.

Tables

Table 1 Laboratory Analytical Results - Soil 138 Acorn Drive (Formerly 391 Acorn Drive) Laurel Bay Military Housing Area

Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Results Samples Collected 07/30/07			
Constituent	SCOREC RBSLS	391 Acorn Bottom - 01	391 Acorn Side - 02		
Volatile Organic Compounds Analyz	ed by EPA Method 8260B (mg/kg)				
Benzene	0.003	0.000842	ND		
Ethylbenzene	1.15	0.000673	0.000696		
Naphthalene	0.036	ND	0.00463		
Toluene	0.627	0.00309	0.00339		
Xylenes, Total	13.01	0.00222 0.0023			
Semivolatile Organic Compounds A	nalyzed by EPA Method 8270 (mg/kg)				
Benzo(a)anthracene	0.066	0.0529	0.255		
Benzo(b)fluoranthene	0.066	0.0585	0.333		
Benzo(k)fluoranthene	0.066	0.0262	0.128		
Chrysene	0.066	0.0546	ND		
Dibenz(a,h)anthracene	0.066	ND	0.0751		

Notes:

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 1.0 (SCDHEC, May 2001).

Table 2 Laboratory Analytical Results - Initial Groundwater 138 Acorn Drive (Formerly 391 Acorn Drive) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort

Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Site-Specific Groundwater VISLs (µg/L) ⁽²⁾	Results Sample Collected 07/29/08
Volatile Organic Compounds Analyze	d by EPA Method 8260B	(μg/L)	
Benzene	5	16.24	ND
Ethylbenzene	700	45.95	ND
Naphthalene	25	29.33	118
Toluene	1000	105,445	ND
Xylenes, Total	10,000	2,133	ND
Semivolatile Organic Compounds Ana	alyzed by EPA Method 82	270D (µg/L)	
Benzo(a)anthracene	10	NA	ND
Benzo(b)fluoranthene	10	NA	ND
Benzo(k)fluoranthene	10	NA	ND
Chrysene	10	NA	ND
Dibenz(a,h)anthracene	10	NA	ND

Notes:

(1) South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 1.0 (SCDHEC, May 2001).

⁽²⁾ Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - not applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

μg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

Table 3

Laboratory Analytical Results - Permanent Monitoring Well Groundwater 138 Acorn Drive (Formerly 391 Acorn Drive) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Site-Specific Groundwater VISLs -	Results Samples Collected 02/23/10 and 02/24/10					
Constituent	SCUREC RESES	(μg/L) ⁽²⁾	MW113 02/23/10	MW114 02/23/10	MW115 02/24/10	MW116 02/24/10		
Volatile Organic Compounds Analyze	d by EPA Method 8260E	β (μg/L)						
Benzene	5	16.24	ND	ND	ND	ND		
Ethylbenzene	700	45.95	ND	ND	ND	ND		
Naphthalene	25	29.33	ND	11.8	3.59	2.41		
Toluene	1000	105,445	ND	ND	ND	ND		
Xylenes, Total	10,000	2,133	ND	ND	ND	ND		
Semivolatile Organic Compounds And	alyzed by EPA Method 8	270D (μg/L)						
Benzo(a)anthracene	10	NA	ND	ND	ND	ND		
Benzo(b)fluoranthene	10	NA	ND	ND	ND	ND		
Benzo(k)fluoranthene	10	NA	ND	ND	ND	ND		
Chrysene	10	NA	ND	ND	ND	ND		
Dibenz(a,h)anthracene	10	NA	ND	ND	ND	ND		

Notes:

(2) Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - not applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix D.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

 $\mu g/L$ - micrograms per liter

VISL - Vapor Intrusion Screening Level

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 1.0 (SCDHEC, May 2001).

Table 4

Laboratory Analytical Results - Long Term Monitoring 138 Acorn Drive (Formerly 391 Acorn Drive) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	Benzene	Ethylbenzene	Naphthalene	Toluene	Xylenes	Benzo(a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	
SCDHEC RBSLs (1) (µg/	L)	5	700	25	1000	10,000	10	10	10	10	10
Site-Specific Groundwa	ater VISLs ⁽²⁾ (µg/L)	16.24	45.95	29.33	105,445	2,133	N/A	N/A	N/A	N/A	N/A
Well ID	Sample Date										
	10/31/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BEALB391MW113	7/30/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEALDSGIMMITS	9/10/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	9/15/2015	ND	NA	ND	NA	NA	NA	NA	NA	NA	NA
	10/31/2011	ND	ND	0.97	ND	ND	ND	ND	ND	ND	ND
BEALB391MW114	7/29/2013	ND	ND	6.6	ND	ND	ND	ND	ND	ND	ND
DEALD391MW114	9/10/2014	ND	ND	12	ND	ND	ND	ND	ND	ND	ND
	9/14/2015	ND	NA	0.51	NA	NA	NA	NA	NA	NA	NA
	10/31/2011	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND
BEALB391MW115	7/29/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEALDSGIMMITS	9/10/2014	ND	ND	0.89	ND	ND	ND	ND	ND	ND	ND
	9/14/2015	ND	NA	0.63	NA	NA	NA	NA	NA	NA	NA
	10/31/2011	ND	ND	33	ND	ND	ND	ND	ND	ND	ND
DEAL D201MW116	7/29/2013	ND	ND	3.7	ND	ND	ND	ND	ND	ND	ND
BEALB391MW116	9/10/2014	ND	ND	0.57	ND	ND	ND	ND	ND	ND	ND
(1)	9/14/2015	ND	NA	19	NA	NA	NA	NA	NA	NA	NA

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 (SCDHEC, May 2015).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

JE - Johnson & Ettinger

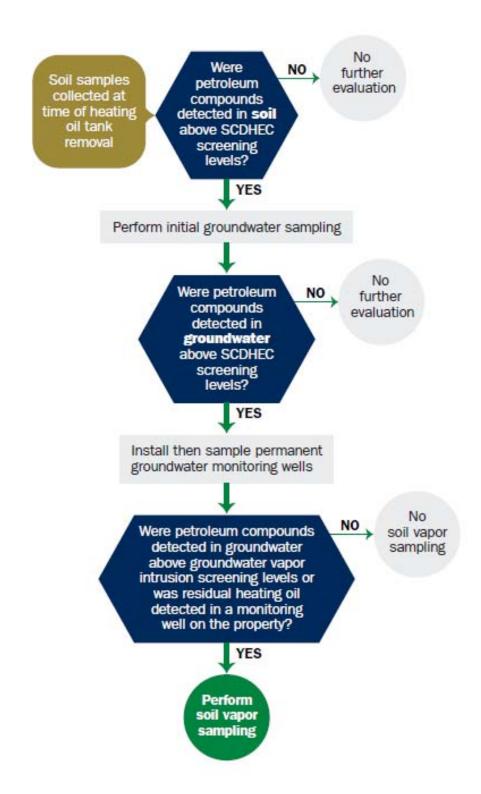
N/A - not applicable

NA - not analyzed

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). A comprehensive table of the historical groundwater analytical results for all permanent monitoring wells at the site through 2015 is presented in Appendix E.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control


μg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

⁽²⁾ Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1 South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Submit Completed Form To:
UST Program
SCDHEC
2600 Bull Street
Columbia, South Carolina 29201
Telephone (803) 896-6240

I. OWNERSHIP OF UST (S)
Beaufort Military Compley Family Housing Owner Name (Corporation, Individual, Public Agency, Other)
Mailing Address BAY BLVD.
Beaufort 5C 29906 City State Zip Code
Area Code Telephone Number Contact Person

II. SITE IDENTIFICATION AND LOCATION

N/A

Permit I.D. # Actus Lend Lease Construction

Facility Name or Company Site Identifier

391 Acorn

Street Address or State Road (as applicable)

Beautout, SC 29906

City

Beautout

County

Attachment 2 III. INSURANCE INFORMATION

	To a second
1	Insurance Statement
mo fur <u>sec</u>	The petroleum release reported to DHEC on ν/A at Permit ID # may qualify to receive state onies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up and, written confirmation of the existence or non-existence of an environmental insurance policy is required. This
	Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES NO (check one)
	If you answered YES to the above question, please complete the following information:
	My policy provider is: The policy deductible is: The policy limit is:
	If you have this type of insurance, please include a copy of the policy with this report.
	And I do/do not (circle one) wish to participate in the Superb Program.
	IV. CERTIFICATION (To be signed by the UST owner/operator.)
11	tation, I believe that the submitted information is true, accurate, and complete
Ì	or or print,
Signatur To be	completed by Notary Public:
Sworn b	efore me this day of, 20
(Name)	
Notary Pu Please aff	ublic for the state of

	; ,	V. UST INFORMATION				. 4	•	
, · .			Tank 1	ı ank 2	Tank 3	Tank 4	Tank 5	Tank 6
•	A.	Product(ex. Gas, Kerosene)	#2 DIESO					
	B.	Capacity(ex. 1k, 2k)	280G \$80G			,		
	C.	Age	300			·		
	D.	Construction Material(ex. Steel, FRP)						
	E.	Month/Year of Last Use	Steel					
	F.	Depth (ft.) To Base of Tank.						
•	G.	Spill Prevention D.	63"					
F	ł.	Overfill Prevention Equipment Y/N	N		-			
I. J.	-	Method of Closure Removed/Filled	Roman				-	
K.	V	visible Corrosion or Pitting Y/N	628.07					
L.	. V	isible Holes Y/N	y				-	
M.	Mo	ethod of disposal for any USTs removed from the g	7					
		Recycling - Scrap Stee	attach	disposal 	manifest	s)		
N.	Met disp	hod of disposal for any liquid petroleum, sludges, o	or wastewaters	remove	l from th	ne USTs	(attach	_
								,
0	~~	SoliDiFication &	SUBTITL		1.	1000		-
O	If any	COHOSION DIALE						-
	. r/k	THE ENDS OF THE TANK HAD	WHINY SM	ALL P	V)LES	SCAFT	ERED	,

VI. PL. .. G INFORMATION

		Tank 1	Tank 2	Tank 3	Tank 4	Tank 5	Tank
A.	Construction Material(ex. Steel, FRP)	Steel	 			ļ	
B.	Distance from UST to Dispenser	<u> </u>					
C.	Number of Dispensers	N/A					
D.	Type of System Pressure or Suction	-0-		•			
E.	Was Piping Removed from the Ground? Y/N	Electru					
F.	Visible Corrosion or Pitting Y/N	4					
G.	Visible Holes Y/N				+		
Н.	Age	N					<u> </u>
		N					
			.				
	If any corrosion, pitting, or holes were observed, de	on F	ill F	ipe	5-fan)	un.
	VII. BRIEF SITE DESCRIPTION AND 1	HISTORY	Y ,.				
-	Home Heating Oil TAN	JK - (Pos	IDEN	7141		-
_				10210	ITAL	-	
_	·		-	·			
							-
 -						··	

VIII. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		*	
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, mild, etc.)		X	
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		*	
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:		*	
Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness.		*	

Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	n	OVA
1	BAT					by ECHEVARRA	
2	MOTTOS	5	SAND	63"		A. MANIEL	
3	SIDE		SAND	52"		A. Maorigy	ND
4					100	PI SIVOU VIG	NO
5							
6	<u> </u>						
7							
- 8							·
9							
10							
11					- 		
12				──			
13							
14							
15							
16							
17					·		
8							
9						·	
0							
		1	·				

SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

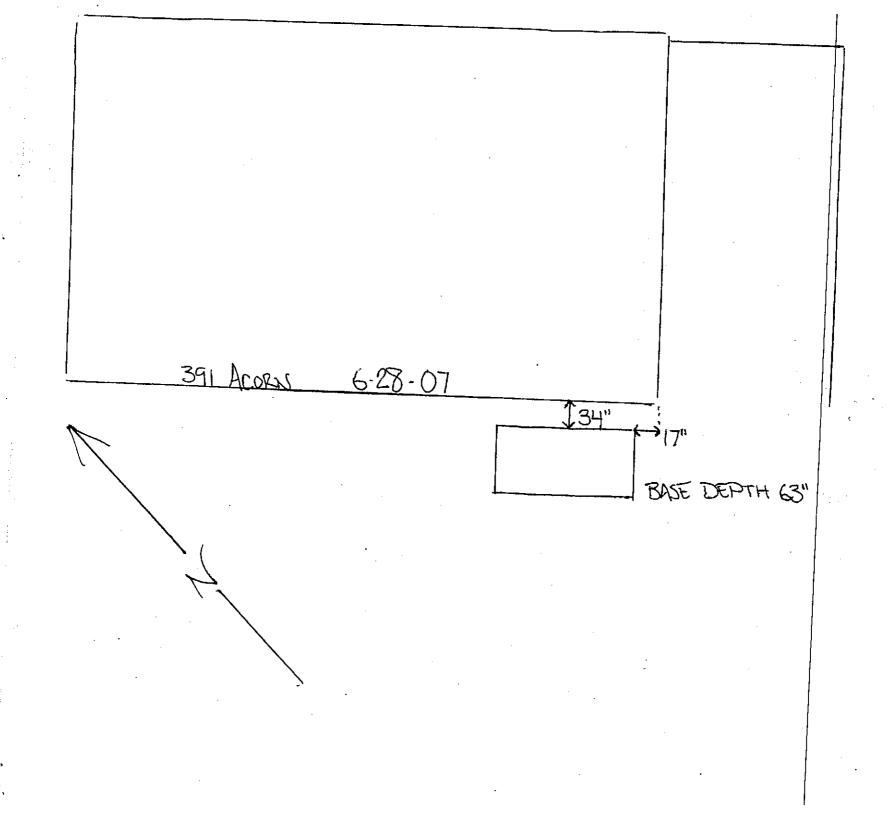
EON M. L. A.
EPA Method 8260 B Volatile Organic Compounds - Presentative: Zea Sodium Bi Sulfate lea EPA METHOD 8270 Palla Agent Little
- Reservative Zea Sarin & CREGANIC Compounds
EPA METHOD 8270 Poly Aromatic Hydro CARBONS NO Presentation
NO PRESERVATIVE
DNe (1) SiDEMIO
DNE (1) SIDEWALL And ONE (1) BOHOM SAmple were secured from tank excavation Samples were stoned and all all
Stripte were secured fame trule a mil
- samples were stoned in the exchantion
Samples were stoned and shipped in AN INSURATED COOLER W/ ICE.
Cooled W/ ICE.

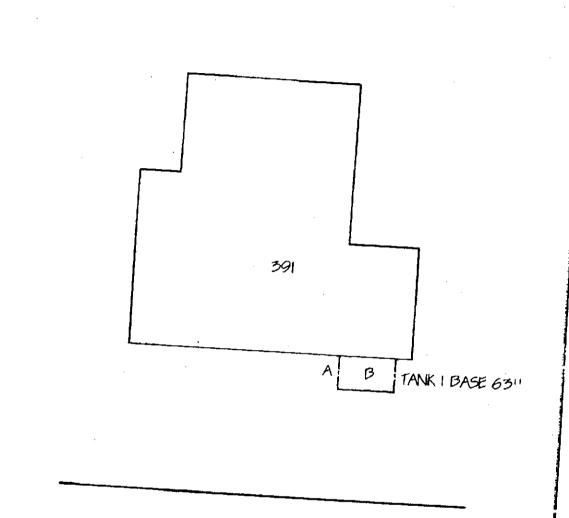
XI. RECE ORS

A. Are there any lakes nonda et	Yes	No
A. Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		
If yes, indicate type of receptor, distance, and direction on site map.		X
B. Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		ļ
If yes, indicate type of well, distance, and direction		i/
C. Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		-
If yes, indicate type of structure, distance, and direction on site map.		/
O. Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination?		
If yes, indicate the type of utility, distance, and direction on the site	3	/
Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		
If yes, indicate the area of contaminated soil on the site map.	1	

SUMMARY OF ANALYSIS RESULTS

N/A


Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.


СоС	SB-1	SB-2	SB-3	SB-4	SB-5	SB-6		77 c
Benzene				1	OB-5	35-0	SB-7	SB-8
Toluene				 -	 	 -		
Ethylbenzene			 	 -	 	 		<u> </u>
Xylenes				 		 		
Naphthalene				 				
Benzo(a)anthracene				<u> </u>		<u> </u>		
Benzo(b)flouranthene		::				<u> </u>		
Benzo(k)flouranthene						<u> </u>		
Chrysene		[· · · · · · · · · · · · · · · · · · ·		<u> </u>	:	 	
Dibenz(a,h)anthracene								
TPH (EPA 3550)			<u></u> i				· ·	:
	<u> </u>							

0.0	T					, = =		
CoC	SB-9	SB-10	SB-11	SB-12	SB-13	SB-14	SB-15	SB-16
Benzene								
Toluene			<u>-</u>					<u>. </u>
Ethylbenzene	 				<u> </u>			
Xylenes		-		,			<u> </u>	
Naphthalene							<u>-</u> -	· · · · · · · · · · · · · · · · · · ·
Benzo(a)anthracene								
Benzo(b)flouranthene							<u> </u>	
Benzo(k)flouranthene								
Chrysene		<u></u>						
Dibenz(a,h)anthracene			<u> </u>		<u> </u>			
TPH (EPA 3550)	<u> </u>	<u> </u>		<u> </u>				

Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1		W-2		W -3		W -4
Free Product Thickness	None				+			
Benzene	5	 	1		十	<u> </u>	\dashv	
Toluene	1,000		7		+		+	-
Ethylbenzene	700		+		1	<u> </u>	+	_
Xylenes	10,000	 -	+		+		╁	
Total BTEX	N/A		1		+		_	
MTBE	40		†	, , _	╁		╁-	
Naphthalene	25				+		╁	
Benzo(a)anthracene	10		\dagger		╁-	<u> </u>	+	
Benzo(b)flouranthene	10		†		-	<u> </u>	-	
Benzo(k)flouranthene	10		†-		\vdash	·	-	
Chrysene	10		 		_			
Dibenz(a,h)anthracen e	10				-			
EDB	.05		 		_			
,2-DCA	.05		-					-
ead	Site specific		!					

ACORN DRIVE

TANK I EXCAVATION

A-SOIL TEST SIDE SAMPLE @ 48" B-SOIL TEST BOTTOM SAMPLE @ 63"

CUSTOMER	?

BEAUFORT MILITARY CONPLEX FAMILY HOUSING

SITE ADDRESS :

391 ACORN DRIVE

\$CATE: |\| 6,≈ 1, 0,

EPG INC.

DATE: 9/27/2007 EPG INC.

P.O. BOX 1096 MOUNT PLEASANT, SC 28465-1096

ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4) ient: EPG, INC.

PO BOX 1096 MT PLEASANT, SC 29465

JOHN MAHONEY

Work Order: Project:

Project Number:

OQH0084 ·

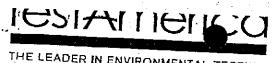
LAUREL BAY

EP2362

Sampled: 07/30/07-07/3

Received: 08/03/07

LABORATORY REPORT


Sample ID: 389 ACORN SID-02 - Lab Number: OQH0084-02 - Matrix: Solid/Soil

Volati	Analyte	ID: 389 ACOR	(Q Units	MD		Dil	A	<u> </u>		
)1-20-3 08-88-3	ile Organic Compounds by E.	PA Method 826 7.81	0B - (Cont.			L Factor	Date/Time	Ву	Method	Bato
330-20 urrogate urrogate urrogate	, yourene	5.15 3.48 125 % 95 % 107 %	Y Y Y	ug/kg dry ug/kg dry	1.47	1.71 1.71 1.71	1 1	08/04/07 21:03 08/04/07 21:03 08/04/07 21:03	JWT JWT	EPA 8260B EPA 8260B EPA 8260B	7H04
20-12-7 5-55-3 25-99-2 27-08-9 21-24-2 2-32-8 -12-0 8-01-9 -70-3 6-44-0 73-7 -39-5 67-6 00-3 1-8 00-0 28ate: 2-Fl gate: Nitro	Acenaphthene Acenaphthylene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene 1-Methylnaphthalene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene uorobiphenyl (24-121%) phenzene-d5 (19-111%)	121 66.1 22.5 21.8 21.8 21.5 25.5 104 24.8 27.2	Y,U Y,U Y,U Y,U Y,U Y,U Y,U Y,U Y,U I I I I I I I I I I I I I I I I I I I	ug/kg dry g/kg dry g/kg dry g/kg dry	29.8 81.2 26.9 88.4 283.3 248.9	207 207 207 207 207 207 207 207 207 207	1 00 1 00 1 08 1 08 1 08 1 08 1 08 1 08	18/12/07 12:46 18/12/07 12/12/	REM I REM I REM I REM I E REM	EPA 8270C EPA 82	7H090. 7H0903 7H0903 7H09030

\S#	Analyte	D t-			U.S. ISUMI	QH0084-(03 - M	atrix: Solid/So	il		
neral	Chemistry Parameters % Solids	- Testing		Units	MDL	PQL	Dil Facto		Ву	Method	Batch
atile (3-2 11-4	Organic Compounds by EPA Benzene	77.5 Method 8260B 0.842		%.	0.100	0.100	ı	08/06/07 15:25	RRP	EPA 160.3	7H0602
-3 3-3 90-7	Ethylbenzene Naphthalene Toluene Xylenes, total	0.673 	Y,I Y,I Y,U — Y	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	0.513 0.593 0.775	1.40 1.40 1.40	1	08/04/07 23:33 08/04/07 23:33 08/04/07 23:33	JWT	EPA 8260B EPA 8260B	7H0400 7H0400
ate: 1,2	2-Dichloroethane-d4 (73-137%) merica - Orlando, FL	2.22 131 %	Y	ug/kg dry	1.21 0.728	1.40 1.40	1	08/04/07 23:33	JWT	EPA 8260B EPA 8260B EPA 8260B	7H04004 7H04004 7H04004

Enid Ortiz For Shali Brown

Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465

JOHN MAHONEY

Work Order:

OQH0084

Project:

LAUREL BAY

Project Number: EP2362 Sampled: 07/30/07-07/31/07

Received: 08/03/07

LABORATORY REPORT

Sample ID: 391 ACRON BOT-01 - Lab Number: OQH0084-03 - Matrix: Solid/Soil

Analyte	Result	Q Units	MDL		Dil Analyzed			
olatile Organic Compounds by Introgate: 4-Bromofluorobenzene (59-1189) progate: Dibromofluoromethane (55-1459) progate: Toluene-d8 (80-117%) plynuclear Aromatic Hydrocarbo 32-9 Acenaphthene 3-96-8 Acenaphthylene 3-12-7 Anthracene 3-99-2 Benzo (a) anthracene 3-99-2 Benzo (b) fluoranthene 3-99-2 Benzo (k) fluoranthene 3-8 Benzo (a) pyrene 3-8 Benzo (a) pyrene 3-9 3-1-Methylnaphthalene 3-3 Chrysene 3-3 Dibenz (a,h) anthracene 3-4-0 Fluoranthene 3-7 Fluorene 3-7 Fluorene 3-8 Phenanthrene 3-9-5 Pyrene 3-9-6 Pyrene 3-9-7 Pyrene 3-9-7 Pyrene 3-9-7 Pyrene 3-9-8 Phenanthrene 3-9-9 Pyrene 1-9-9 Pyrene 1-9-	EPA Method 8260B - 93 % 6) 107 %	Cont. 3270 Ug/kg dry ug/kg dry ug/kg dry ug/kg dry	95.5 126 68.7 23.3 22.7 22.4 26.5 108 25.8 28.3 31.0 84.3 27.9 91.9 86.5 50.8	215 215 215 215	Factor Date/Time 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08 1 08/12/07 13:08	REM EREM EREM EREM EREM EREM EREM EREM	PA 8270C PA 8270C PA 8270C PA 8270C PA 8270C PA 8270C	

LABORATORY REPORT

Sample ID: 391 ACRON SID-02 - Lab Number: OQH0084-04 - Matrix: Solid/Soil

eral Chemistry Do-	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed	B _v	Made	
eral Chemistry Parameters % Solids tile Organic Compounds by EPA Benzene			%.	0.100	0.100	1	Date/Time 08/06/07 15:25	By	Method	Batch
	0.553	B Y.U	ug/kg dry	0.555		•	00/00/07 15:25	RRP	EPA 160.3	7H0602
Naphthalene Toluene Toluene	0.696 4.63 3.39 2.36 114 % 96 % 106 % 98 % y EPA Method	Y,I Y Y	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	0.553 0.640 0.835 1.31 0.785	1.51 1.51 1.51 1.51 1.51	1 1 1	08/04/07 23:50 08/04/07 23:50 08/04/07 23:50 08/04/07 23:50 08/04/07 23:50	TWI TWI	EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B	7H04004 7H04004 7H04004 7H04004 7H04004

TestAmerica - Orlando, FL

Enid Ortiz For Shali Brown

Project Manager

·Client: EPG, INC.

PO BOX 1096

MT PLEASANT, SC 29465 JOHN MAHONEY

Work Order: Project:

OQH0084

Project Number:

LAUREL BAY

EP2362

Sampled: 07/30/07-07/31/0

Received: 08/03/07

LABORATORY REPORT

Sample ID: 391 ACRON SID-02 - Lab Number: OQH0084-04 - Matrix: Solid/Soil

		Result	_		MDL		Dil	A			
-32-9	iclear Aromatic Hydrocart Acenaphthene	ons by EPA Me 86.4	thod 82	270			Facto	Date/Time	Ву	Method	Batch
8-96-8 3-12-7	Acenaphthylene Anthracene	114	Y,U Y,U	ug/kg dry	86.4	195	1,	08/12/07 13:30	D.F.		
-55-3	Benzo (a) anthracene	62.2 255	Y,U	ug/kg dry ug/kg dry	114 62.2	195 195	1	08/12/07 13:30	REM	2111 B270C	
5-99-2 7-08-9	Benzo (b) fluoranth e ne Benzo (k) fluoranthene	333	Y Y	ug/kg dry ug/kg dry	21.1 20.5	195	1	08/12/07 13:30 08/12/07 13:30	REM REM	EPA 8270C EPA 8270C	7H0903
1-24-2 32-8	Benzo (g,h,l) perylene Benzo (a) pyrene	128 253	Y,I Y	ug/kg dry ug/kg dry	20.5	195 195	1 1	08/12/07 13:30 08/12/07 13:30		EPA 8270C	7H0903
I 2-0 -01-9	1-Methylnaphthalene Chrysene	163 97.9	Y,I Y,U	ug/kg dry	20.2 24.0	195 195	1	08/12/07 13:30	REM	EPA 8270C EPA 8270C	7H0903 7H0903
70-3 44-0	Dibenz (a,h) anthracene	23.3 75.1	Y,U Y,I	ug/kg dry ug/kg dry	97.9 23.3	195 195	1 (08/12/07 13:30	REM	EPA 8270C EPA 8270C	7H09030
3-7 39-5	Fluorene Fluorene	28.0 76.3	Y,U	ug/kg dry ಆಫ್/kg dry	25.6 28.0	195 195	1 (08/12/07 13:30		EPA 8270C EPA 8270C	7H09030
7-6)-3	Indeno (1,2,3-cd) pyrene 2-Methylnaphthalene	269 83.1	Y,U Y	ug/kg dry ug/kg dry	76.3 25.2	195 195	1 0	8/12/07 13:30 F	Œivi i REM E	EPA 8270C	7H09030 7H09030
-8 0-0	Naphthalene Phenanthrene Pyrene	78.3 46.0		ug/kg dry ug/kg dry	83.1 78.3	195 195	1 0	B/12/07 13:30 R	EM E	PA 8270C PA 8270C	7H09030 7H09030
rate: 2-1	r yrene Fluorobiphenyl (24-121%) trobenzene-d5 (19-111%)	39.6 58 %		ug/kg dry ug/kg dry	20.6	195 195	1 08	//12/07 13:30 R	EM E	PA 8270C : PA 8270C : 7	7H09030 'H09030
ate: Ter	Thenyl-d14 (44-171%)	64 % 115 %							ew El	PA 8270C 7	H09030

LABORATORY REPORT

Sample ID: 398 ACRON BOT-01 - Lab Number: OQH0084-05 - Matrix: Solid/Soil

\$#	Analyte	D ti			THUEL: (JUH0084.	05 - N	latrix: Solid/S	oil		
	Chemistry Parameters % Solids	Vesuit		Units	MDI		Dil Facto		Ву	Method	Batch
11-4 3-3 18-3 -20-7 gate: 1 gate: 4 gate: D gate: Ta	Organic Compounds by EPA Benzene Ethylbenzene Naphthalene Toluene Xylenes, total ,2-Dichloroethane-d4 (73-137%) -Bromofluorobenzene (59-118%) ibromofluoromethane (55-145%) pluene-d8 (80-117%)	0.476 0.585 3.62 2.90 2.01 122 % 91 % 105 %	Y,I Y,I Y Y Y	ug/kg dry ug/kg dry ug/kg dry	0.100 0.396 0.458 0.598 0.935 0.562	0.100 1.08 - 1.08 1.08 1.08 1.08	1 1 1 1 1	08/06/07 15:25 08/05/07 00:07 08/05/07 00:07 08/05/07 00:07 08/05/07 00:07 08/05/07 00:07			7H06026 7H04004
1-8 1-7 3 TestA 1 Enid O	Ar Aromatic Hydrocarbons be Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene merica - Orlando, FL Pritz For Shali Brown Manager	y EPA Method	r U	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	95.2 126 68.5 23.3	215 215 215 215	1 (08/12/07 13:52 F 08/12/07 13:52 R	rem i	EPA 8270C EPA 8270C	7H09030 7H09030 7H09030 7H09030

To assist us in their the	page	1047
O @110084		_

To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes?

Compliance Monitoring

	Client Name	Ese	-			is this wor	k being conducted for regular mpliance Monitoring	il methods, lory pumosee?
	Address:			Client#:_	2411			
City	State/Zip Code:_				·	Project Name	LAUREP BAL	
P	oject Manager:	Talli	·//•			A NACT MRUIG:	LAUREL BAL	1
	phone Number:	ab sec	MAHONEY		-	Jool III.	EP 2362	
Sampler Name	a: (Print Name)	613-861	-0:16 T	Fax: \$43	881-7766	ite/Location ID:		State:
		John	MAHONEN		301-7-766	Report To:		
- J	npler Signature:		7			invoice To:		
TAT		<u> </u>	Matrix Pre	servation & # of Container		Quote #:		
Standard Rush (sumbar		1 4	S P b	act valion & # of Containen		Analyze For	PO	
Rush (surcharges	may apply)		osite ing Water SolfSold ziy Other		k / 7	1 1		
Date Needed:		1 1	Composite - Drinking v Specify O		18/2/		'	QC Deliverables
Fax Results: Y	N	8 8	3 2 2		\$270	/ / /	:	None Level 2
	X	Sampled	D D D D D D D D D D D D D D D D D D D		(4 A) /2/	/ / /		(Batch QC)
SAMPLE ID	1 1	ime Sampled	E See See See See See See See See See Se		1 /20 A	/ / /		Level 3 Level 4
389AcaeN Bo			. \$ \$ \$ \$.	NeOH P-SO ₄ Methanol None Other (Specify)	87 67 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	/ / /	1 / / /	Other:
389 Acoen 5	1-01 7/	0/09:106	1 211		//	///	/	
391 Acoen B		9:20 C		1122	XX			REMARKS
1391 A	T-01 11	10:10 6		1-1-1-2-2	XX			61
2391 Acoen Si	D-02 11	10:15 C		1-1-1-12-2	XX			0,
* 398 Acoen Be	t-01 11	10:50 G	3	1/22	XX	╼╂╼╼╂╼	 	
* 398 Acord 511	-02 11	10:53 C	3	1-1-1-122	XX			04
* 394 Acoen Bo	T-03 11	11:10 G	3	122	XX			05
× 398 Acord 51		11:15 C	3	1/22	XX	++-		06
x 294 Biech Bo	T-01 7/31	617:30 G	\$		XX			0.2
\$ 294BIRCH 5'; Special Instructions:	D 02 7/3/	09:35 C	3-1-1	122)	CX	╌╂╼╌┼		
				11/144	CX	+		06
		411		•			PODIC	
Religendate of the W		$\frac{8/z}{1}$	7,	•	. /		IN THE TOTAL COMMENTS:	10
Relinguished By:	7	Date: 31 01 11	14:00 7	Fraily	f har		Lab Temp	
Relinfold by Lot		0//	/ Zzd	Bruch	Date: /2/07	Time+U-O	BORATORY COMMENTS:	
Relinquished By:	<u> </u>	Date: / U	me:730 Received E	By: Har	1	Cus	cody Seals N les supplied by Test Americ 2752 Cl	
1		Date: Tir	me: Received		Date: 7 07	Time: (S Bott	earSupplied by Test Americ	V/A - V/A - N To Class
		 -	1	<u> </u>	Date:	Time: Meth	型件SES97億17	SPARE
	*.					Lineth	og of Shipment: Fell Ex	建筑器图图

O Q 4 0084

To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes?

Compliance Monitoring

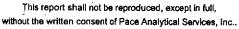
	Client Name_	EP6	.		is this work	being conducted for regulatory	Methods, / Dumoses?
	Address:			Client#: Ziff(Cui	npliance Monitoring	
City/	State/Zip Code:				Project Name:	1	
P	roject Manager:	Jakala	Attoney		Project #	LANGE & BAY F2362	· · · · · · · · · · · · · · · · · · ·
	phone Number:	747 es)			Site (Leastle and	12362	
Sampler Name	e: (Print Name)	4000	10464 Maria	Fax: \$43-881-046	-7. CitarLocation ID:		State:
	npler Signature:	Alan	MAHORCY				* *
		()//			Invoice To:		
TAT Standard	T	- 	Matrix Preserv	attori & # of Containers	Quote #:	PO#:	
Rush (surcharges	may apply)		#VSolid		Analyze For:		
Date Needed:		n posite	Drinking Water S - Solfsold Specify Other	The state of the s	₽/ / /	/ / / / /	QC Deliverables
<u> </u>		_ _ 8		11111891	7 / / /		None Level 2
Fax Results: Y	N -	ime Sampled	B Q W		3/ / / /		(Batch QC)
		Grab,	Se	1 2 MM F	/ / / /		Level 3
SAMPLE ID		e e	Field Fitter SL - Studge GW - Grount WW - Waste HNO ₃		/ / /	/	Level 4 Other:
294 DIRCH K	SOT 03 7/3	109 0945 G	F 18 8 X 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		'	
	(1) /1(6-1-7)	0955 C	13111	122 x x			REMARKS
797 BIRCH E	SOTO 11	10:30G	13111	122 X X			//
292 BIRCH B	ID 02 11	10:35 C	13111	122 X X		╼╁╼╌╁╌╌┠╌	17
292 BIREHS	07 03 11	10:50 G	3	122 X X		╼┼╼╾┼╼╌╂╌	
TE DIRECTION	1004 11	11:00C	3	122 4 4			iv
,						╼┾╼╌┼╼╌╂╌	
				┊╌┼╌┩╌╏ ╌ ┤ ╌┤		╼┩╼╼┼╼╼╁╼╾╂	
				^{╏╾╅╾╅} ╾ ╏╸			
Special instructions:	 -	<u></u>		╼┾╼┾╌╂╼╌┼╼╌		╼┼╾╼┼╼╼╂╼╼	
		, ,					
- SOMA		0/2/01	-	1	LAE	ORATORY COMMENTS	
Reilinquished By:		7/2/1	4:00 July	· AA	/ C/28	こうしょうしゅう アイグラン こうしゅうしょう しょうしょう しょう	
Romalisted By C.	//	Date: 1707 Time		railet B	07 430	Rec Lab Temp 18 22 22	
1	7-1-	60/6:/07 m/n	e73 Received By:	Date:	Time: Cust	ody Seals TV	
Relinquished By:	·	Date: Time		DAN: 7/	67 Time: 15 Bott	Rec Lab Temp: Ody Seals: 37 N N/N/ es Supplied by Test America: od of Shipment Fee	
			B: Received By:	Date:	Time: Su	23325的魔(开)	
J		-			(Meth	od of Shipment!	574E/19/1

Appendix C Laboratory Analytical Report - Initial Groundwater

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project:


LAUREL BAY SAMPLING 7/29/08

Sample: 389 ACORN A	Lab ID: 9224	564013 (Collected: 07/29/0)8 14:40	Received: 07	7/31/08 13:40 I	Matrix: Water	
Parameters ,	Results	Units	Report Limit	DF	Prepared	: Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical Meth	od: EPA 8260		•			**.	
Dibromofluoromethane (S)	96 %		85-115	1		08/05/08 22:17	1868-53-7	
1,2-Dichloroethane-d4 (S)	99 %		79-120	1		08/05/08 22:17		
Toluene-d8 (S)	100 %		70-120	1	5c	08/05/08 22:17		
Sample: 391 ACORN A	Lab ID: 9224	564014 (Collected: 07/29/0	8 15:50	Received: 07	7/31/08 13:40 I	Matrix: Water	•
Parameters	Results	Units	Report Limit	DF	200	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM SPE	Analytical Metho	od: EPA 8270	by SIM Preparati	on Meth	od: EPA 3535			
Acenaphthene	5.1 ug/l		4.0	1	. *	08/13/08 04:27	83-32-0	
Acenaphthylene	ND ug/l		3.0	1		08/13/08 04:27		
Anthracene	ND ug/l		0.10	1		08/13/08 04:27		
Benzo(a)anthracene	ND ug/l		0.20	1		08/13/08 04:27		
Benzo(a)pyrene	ND ug/l		0.40	1		08/13/08 04:27		
Benzo(b)fluoranthene	ND ug/L		0.60	1		08/13/08 04:27		
Benzo(g,h,i)perylene	ND ug/L		0.40	1		08/13/08 04:27		
Benzo(k)fluoranthene	ND ug/l		0.40	1		08/13/08 04:27		
Chrysene	ND ug/L		0.20	1		08/13/08 04:27		
Dibenz(a,h)anthracene	ND ug/l		0.40	1		08/13/08 04:27		
Fluoranthene	ND ug/L		0.60	1		08/13/08 04:27		
Fluorene	2.4 ug/L		0.62	1		08/13/08 04:27		
ndeno(1,2,3-cd)pyrene	ND ug/L		0.40	1		08/13/08 04:27		
1-Methylnaphthalene	ND ug/L		4.0	1		08/13/08 04:27		
2-Methylnaphthalene	ND ug/L		4.0	1		08/13/08 04:27		
Vaphthalene	ND ug/L		3.0	1		08/13/08 04:27		
Phenanthrene	ND ug/L		0.40	1		08/13/08 04:27		
Pyrene .	ND ug/L		0.20	1		08/13/08 04:27		
Nitrobenzene-d5 (S)	55 %		50-150	1		08/13/08 04:27		
2-Fluorobiphenyl (S)	89 %		50-150	1		08/13/08 04:27		
Terphenyl-d14 (S)	118 %		50-150	1		08/13/08 04:27		
3260 MSV Low Level	Analytical Metho	d: EPA 8260						
Benzene	ND ug/L		1.0	1		08/05/08 22:41	71-43-2	
Ethylbenzene	ND ug/L		1.0	1	•	08/05/08 22:41	100-41-4	
Naphthalene	118 ug/L		2.0	1		08/05/08 22:41	91-20-3	
Coluene Coluene	ND ug/L		1.0	1		08/05/08 22:41	108-88-3	
n&p-Хуlепе ्	ND ug/L		2.0	1 .		08/05/08 22:41	1330-20-7	
-Xylene	ND ug/L		1.0	1		08/05/08 22:41	95-47-6	
-Bromofluorobenzene (S)	98 %		87-109	1	2.	08/05/08 22:41	460-00-4	
Dibromofluoromethane (S)	96 %		85-115	1	-	08/05/08 22:41	1868-53-7	
,2-Dichloroethane-d4 (S)	99 %		· 79-120	1		08/05/08 22:41	17060-07-0	
oluene-d8 (S)	101 %		70-120	1		08/05/08 22:41	2037-26-5	

Date: 08/14/2008 04:20 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 29

Appendix D Analytical Data — Permanent Well Groundwater

TABLE 4-1

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING MCAS BEAUFORT, SOUTH CAROLINA PAGE 5 OF 12

		391 Acorn Drive						
LOCATION	South Carolina	LBMW113	LBMW114	LBMW115	LBMW116	LBMW116		
SAMPLE ID	State Screening	BEA-LB391GW1130210	BEA-LB391GW1140210	BEA-LB391GW1150210	BEA-LB391GW1160210	BEA-LB391GW1160210-D		
SAMPLE DATE	Values ⁽¹⁾	20100223	20100223	20100224	20100224	20100224		
PAHS (UG/L)								
1-METHYLNAPHTHALENE	10	0.566 U	0.298 J	0.632 U	0.659 U	0.659 U		
2-METHYLNAPHTHALENE	10	0.566 U	0.334 J	0.632 U	0.659 U	0.659 U		
ACENAPHTHENE	NC	0.328 J	3.26	0.653 U	0.703 J	0.469 J		
ACENAPHTHYLENE	NC	0.377 U	0.377 U	0.421 U	0.44 U	0.44 U		
ANTHRACENE	NC	0.377 U	0.377 U	0.421 U	0.44 U	0.44 U		
BENZO(A)ANTHRACENE	10	0.377 U	0.377 U	0.421 U	0.44 U	0.44 U		
BENZO(A)PYRENE	10	0.377 U	0.377 U	0.421 U	0.44 U	0.44 U		
BENZO(B)FLUORANTHENE	10	0.377 U	0.377 U	0.421 U	0.44 U	0.44 U		
BENZO(G,H,I)PERYLENE	NC	0.377 U	0.377 U	0.421 U	0.44 U	0.44 U		
BENZO(K)FLUORANTHENE	10	0.377 U	0.377 U	0.421 U	0.44 U	0.44 U		
CHRYSENE	10	0.377 U	0.377 U	0.421 U	0.44 U	0.44 U		
DIBENZO(A,H)ANTHRACENE	10	0.377 UJ	0.377 UJ	0.421 U	0.44 U	0.44 U		
FLUORANTHENE	NC	0.377 U	0.459 J	0.421 U	0.44 U	0.44 U		
FLUORENE	NC	0.377 U	2.31	0.421 U	0.269 J	0.44 U		
INDENO(1,2,3-CD)PYRENE	NC	0.377 U	0.377 U	0.421 U	0.44 U	0.44 U		
PHENANTHRENE	NC	0.377 U	0.96	0.421 U	0.44 U	0.44 U		
PYRENE	NC	0.566 U	0.566 U	0.632 U	0.659 U	0.659 U		
VOCS (UG/L)								
BENZENE	5	0.6 U						
ETHYLBENZENE	700	0.5 U						
METHYL TERT-BUTYL ETHER ⁽²⁾	40							
NAPHTHALENE	25	0.5 U	11.8	3.59	2.41	2.48		
TOLUENE	1000	0.5 U						
TOTAL XYLENES	10000	0.6 U						

Appendix E Historical Groundwater Analytical Results

TABLE 4-1

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING MCAS BEAUFORT, SOUTH CAROLINA PAGE 1 OF 11

			398 ACORN	
Parameter	Criteria ⁽¹⁾	LBMW104 BEALB-398-GW-MW104-1011 20111028	LBMW105 BEALB-398-GW-MW105-1011 20111028	LBMW106 BEALB-398-GW-MW106-1011 20111028
		GW	GW	GW
POLYNUCLEAR AROMATIC HYDRO	DCARBONS (UG/L)			
1-METHYLNAPHTHALENE	10	0.55 U	0.5 U	21
2-METHYLNAPHTHALENE	10	0.55 U	0.5 U	17
ACENAPHTHENE	NC	0.55 U	0.5 U	1.1
ACENAPHTHYLENE	NC	2.7 U	2.6 U	2.6 U
ANTHRACENE	NC	0.55 U	0.5 U	0.5 U
BENZO(A)ANTHRACENE	10	0.55 U	0.5 U	0.5 U
BENZO(A)PYRENE	10	2.7 U	2.6 U	2.6 U
BENZO(B)FLUORANTHENE	10	0.55 U	0.5 U	0.5 U
BENZO(G,H,I)PERYLENE	NC	2.7 U	0.12 J	2.6 U
BENZO(K)FLUORANTHENE	10	0.55 U	0.5 U	0.5 U
CHRYSENE	10	0.55 U	0.5 U	0.5 U
DIBENZO(A,H)ANTHRACENE	10	2.7 U	2.6 U	2.6 U
FLUORANTHENE	NC	0.55 U	0.5 U	0.5 U
FLUORENE	NC	2.7 U	2.6 U	1.3 J
INDENO(1,2,3-CD)PYRENE	NC	0.55 U	0.5 U	0.5 U
NAPHTHALENE	25	2.7 U	2.6 U	15
PHENANTHRENE	NC	2.7 U	2.6 U	0.47 J
PYRENE	NC	0.55 U	0.5 U	0.5 U
VOLATILES (UG/L)				
BENZENE	5	0.15 UJ	0.15 UJ	2.6 J
ETHYLBENZENE	700	0.17 U	0.17 U	1.8 J
NAPHTHALENE	25	0.38 J	0.68 J	27
TOLUENE	1000	0.16 U	0.16 U	0.16 U
TOTAL XYLENES	10000	0.19 U	0.19 U	0.19 U

TABLE 4-1

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING MCAS BEAUFORT, SOUTH CAROLINA PAGE 2 OF 11

			388 ACORN						
Parameter	Criteria ⁽¹⁾	LBMW110 BEALB-388-GW-MW-110-1011	LBMW111 BEALB-388-GW-MW111-1016	LBMW112 BEALB-388-GW-MW112-1011					
		20111028	20111031	20111031					
		GW	GW	GW					
POLYNUCLEAR AROMATIC HYDRO	CARBONS (UG/L)								
1-METHYLNAPHTHALENE	10	36	0.095 J	0.5 U					
2-METHYLNAPHTHALENE	10	44	0.5 U	0.5 U					
ACENAPHTHENE	NC	1.6	0.5 U	0.85 J					
ACENAPHTHYLENE	NC	2.6 U	2.6 U	2.6 U					
ANTHRACENE	NC	0.5 U	0.5 U	0.5 U					
BENZO(A)ANTHRACENE	10	0.5 U	0.5 U	0.5 U					
BENZO(A)PYRENE	10	2.6 U	2.6 U	2.6 U					
BENZO(B)FLUORANTHENE	10	0.5 U	0.5 U	0.5 U					
BENZO(G,H,I)PERYLENE	NC	2.6 U	2.6 U	0.15 J					
BENZO(K)FLUORANTHENE	10	0.5 U	0.5 U	0.5 U					
CHRYSENE	10	0.5 U	0.5 U	0.5 U					
DIBENZO(A,H)ANTHRACENE	10	2.6 U	2.6 U	2.6 U					
FLUORANTHENE	NC	0.5 U	0.5 U	0.5 U					
FLUORENE	NC	2.9 J	2.6 U	0.31 J					
INDENO(1,2,3-CD)PYRENE	NC	0.5 U	0.5 U	0.5 U					
NAPHTHALENE	25	26	0.2 J	3.9 J					
PHENANTHRENE	NC	3 J	2.6 U	2.6 U					
PYRENE	NC	0.5 U	0.5 U	0.5 U					
VOLATILES (UG/L)									
BENZENE	5	0.28 J	0.15 UJ	0.15 UJ					
ETHYLBENZENE	700	21	0.17 U	0.17 U					
NAPHTHALENE	25	56	0.38 J	5.7					
TOLUENE	1000	0.16 U	0.16 U	0.16 U					
TOTAL XYLENES	10000	33	0.19 U	0.19 U					

TABLE 4-1

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING MCAS BEAUFORT, SOUTH CAROLINA PAGE 3 OF 11

			391 A	CORN		
		LBMW113	LBMW114	LBMW115	LBMW116	
Parameter	Criteria ⁽¹⁾	BEALB-391-GW-MW113-1011	BEALB-391-GW-MW114-1011	BEALB-391-GW-MW115-1011	BEALB-391-GW-MW116-1011	
		20111031	20111031	20111031	20111031	
		GW	GW	GW	GW	
POLYNUCLEAR AROMATIC HYDROCARBONS (UG/L)						
1-METHYLNAPHTHALENE	10	0.5 U	0.5 U	0.55 U	0.42 J	
2-METHYLNAPHTHALENE	10	0.5 U	0.5 U	0.55 U	0.2 J	
ACENAPHTHENE	NC	1.7	3.9	0.55 U	8.1	
ACENAPHTHYLENE	NC	2.6 U	2.6 U	2.7 U	0.21 J	
ANTHRACENE	NC	0.5 U	0.16 J	0.55 U	0.42 J	
BENZO(A)ANTHRACENE	10	0.5 U	0.5 U	0.55 U	0.5 U	
BENZO(A)PYRENE	10	2.6 U	2.6 U	0.15 J	2.6 U	
BENZO(B)FLUORANTHENE	10	0.5 U	0.5 U	0.55 U	0.5 U	
BENZO(G,H,I)PERYLENE	NC	2.6 U	2.6 U	2.7 U	0.086 J	
BENZO(K)FLUORANTHENE	10	0.5 U	0.5 U	0.55 U	0.5 U	
CHRYSENE	10	0.5 U	0.5 U	0.55 U	0.5 U	
DIBENZO(A,H)ANTHRACENE	10	2.6 U	2.6 U	2.7 U	2.6 U	
FLUORANTHENE	NC	0.2 J	0.49 J	0.55 U	0.84 J	
FLUORENE	NC	0.32 J	2.2 J	2.7 U	5.4	
INDENO(1,2,3-CD)PYRENE	NC	0.5 U	0.5 U	0.55 U	0.5 U	
NAPHTHALENE	25	2.6 U	0.52 J	0.47 J	18	
PHENANTHRENE	NC	2.6 U	2.6 U	2.7 U	1.4 J	
PYRENE	NC	0.15 J	0.3 J	0.55 U	0.41 J	
VOLATILES (UG/L)						
BENZENE	5	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	
ETHYLBENZENE	700	0.17 U	0.17 U	0.17 U	0.17 U	
NAPHTHALENE	25	0.32 U	0.97 J	1.2 J	33	
TOLUENE	1000	0.16 U	0.16 U	0.16 U	0.16 U	
TOTAL XYLENES	10000	0.19 U	0.19 U	0.19 U	0.19 U	

TABLE 4-1

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING MCAS BEAUFORT, SOUTH CAROLINA PAGE 4 OF 11

		282 BIRCH						
Parameter	Criteria ⁽¹⁾	LBMW136 BEALB-282-GW-MW136-1111	LBMW137 BEALB-282-GW-MW137-1111	LBMW138 BEALB-282-GW-MW138-1111	LBMW139 BEALB-282-GW-MW139-1111			
		20111115	20111116	20111117	20111115			
		GW	GW	GW	GW			
POLYNUCLEAR AROMATIC HYDRO	CARBONS (UG/L)							
1-METHYLNAPHTHALENE	10	49	0.55 U	0.55 U	0.44 J			
2-METHYLNAPHTHALENE	10	67	0.55 U	0.55 U	0.55 U			
ACENAPHTHENE	NC	2.6	0.55 U	0.29 J	0.27 J			
ACENAPHTHYLENE	NC	2.6 U	2.7 U	2.7 U	2.7 U			
ANTHRACENE	NC	0.5 U	0.55 U	0.55 U	0.55 U			
BENZO(A)ANTHRACENE	10	0.5 U	0.55 U	0.55 U	0.55 U			
BENZO(A)PYRENE	10	2.6 U	2.7 U	2.7 U	2.7 U			
BENZO(B)FLUORANTHENE	10	0.5 U	0.55 U	0.55 U	0.55 U			
BENZO(G,H,I)PERYLENE	NC	2.6 U	2.7 U	2.7 U	2.7 U			
BENZO(K)FLUORANTHENE	10	0.5 U	0.55 U	0.55 U	0.55 U			
CHRYSENE	10	0.5 U	0.55 U	0.55 U	0.55 U			
DIBENZO(A,H)ANTHRACENE	10	2.6 U	2.7 U	2.7 U	2.7 U			
FLUORANTHENE	NC	0.5 U	0.55 U	0.55 U	0.55 U			
FLUORENE	NC	5.7	2.7 U	0.44 J	0.56 J			
INDENO(1,2,3-CD)PYRENE	NC	0.5 U	0.55 U	0.55 U	0.55 U			
NAPHTHALENE	25	38	2.7 U	2.7 U	0.44 J			
PHENANTHRENE	NC	3.6 J	2.7 U	2.7 U	2.7 U			
PYRENE	NC	0.5 U	0.55 U	0.55 U	0.55 U			
VOLATILES (UG/L)								
BENZENE	5	2.4 J	2.5 U	2.5 U	2.5 U			
ETHYLBENZENE	700	17	2.5 U	2.5 U	2.5 U			
NAPHTHALENE	25	120	2.5 U	2.5 U	2.5 UJ			
TOLUENE	1000	0.33 J	2.5 U	2.5 U	2.5 U			
TOTAL XYLENES	10000	14	2.5 U	2.5 U	2.5 U			

TABLE 4-1

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING MCAS BEAUFORT, SOUTH CAROLINA PAGE 5 OF 11

			441 ELDERBERRY						
		LBMW117	LBMW118	LBM	W119				
Parameter	Criteria ⁽¹⁾	BEALB-441-GW-MW117-1111	BEALB-441-GW-MW118-1111	BEALB-441-GW-MW119-1111	BEALB-441-GW-MW119-1111-D				
		20111109	20111109	20111109	20111109				
		GW	GW	GW	GW				
POLYNUCLEAR AROMATIC HYDROG	CARBONS (UG/L)								
1-METHYLNAPHTHALENE	10	0.78 J	8.3 J	3	3.3				
2-METHYLNAPHTHALENE	10	1.3	2.9 J	1.9	2				
ACENAPHTHENE	NC	0.5 U	0.5 UJ	0.58 J	0.53 J				
ACENAPHTHYLENE	NC	2.6 U	2.6 UJ	2.6 U	2.6 U				
ANTHRACENE	NC	0.5 U	0.5 UJ	0.5 U	0.5 U				
BENZO(A)ANTHRACENE	10	0.5 U	0.5 UJ	0.5 U	0.5 U				
BENZO(A)PYRENE	10	2.6 U	2.6 UJ	2.6 U	2.6 U				
BENZO(B)FLUORANTHENE	10	0.5 U	0.5 UJ	0.5 U	0.5 U				
BENZO(G,H,I)PERYLENE	NC	2.6 U	2.6 UJ	2.6 U	2.6 U				
BENZO(K)FLUORANTHENE	10	0.5 U	0.5 UJ	0.5 U	0.5 U				
CHRYSENE	10	0.5 U	0.5 UJ	0.5 U	0.5 U				
DIBENZO(A,H)ANTHRACENE	10	2.6 U	2.6 UJ	2.6 U	2.6 U				
FLUORANTHENE	NC	0.5 U	0.5 UJ	0.5 U	0.5 U				
FLUORENE	NC	0.28 J	0.97 J	1.1 J	1 J				
INDENO(1,2,3-CD)PYRENE	NC	0.5 U	0.5 UJ	0.5 U	0.5 U				
NAPHTHALENE	25	2.6 U	5.2 J	3.8 J	4.2 J				
PHENANTHRENE	NC	2.6 U	0.58 J	2.6 U	2.6 U				
PYRENE	NC	0.5 U	0.5 UJ	0.5 U	0.5 U				
VOLATILES (UG/L)									
BENZENE	5	2.5 U	2.5 U	2.5 U	2.5 U				
ETHYLBENZENE	700	2.5 U	0.88 J	0.41 J	0.42 J				
NAPHTHALENE	25	2.5 U	13	5	5.3				
TOLUENE	1000	2.5 U	2.5 U	2.5 U	2.5 U				
TOTAL XYLENES	10000	2.5 U	2.5 U	2.5 U	2.5 U				

TABLE 4-1

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING MCAS BEAUFORT, SOUTH CAROLINA PAGE 6 OF 11

			437 ELDERBERRY						
		LBMW133	LBMW134	LBMW135					
Parameter	Criteria ⁽¹⁾	BEALB-437-GW-MW133-1111	BEALB-437-GW-MW134-1111	BEALB-437-GW-MW135-1111					
		20111114	20111115	20111115					
		GW	GW	GW					
POLYNUCLEAR AROMATIC HYDRO	CARBONS (UG/L)								
1-METHYLNAPHTHALENE	10	45	3.3	0.27 J					
2-METHYLNAPHTHALENE	10	72	4.1	0.84 J					
ACENAPHTHENE	NC	1.9	0.55 U	0.55 U					
ACENAPHTHYLENE	NC	2.6 U	2.7 U	2.7 U					
ANTHRACENE	NC	0.5 U	0.55 U	0.55 U					
BENZO(A)ANTHRACENE	10	0.5 U	0.55 U	0.55 U					
BENZO(A)PYRENE	10	2.6 U	2.7 U	2.7 U					
BENZO(B)FLUORANTHENE	10	0.5 U	0.55 U	0.55 U					
BENZO(G,H,I)PERYLENE	NC	2.6 U	2.7 U	2.7 U					
BENZO(K)FLUORANTHENE	10	0.5 U	0.55 U	0.55 U					
CHRYSENE	10	0.5 U	0.55 U	0.55 U					
DIBENZO(A,H)ANTHRACENE	10	2.6 U	2.7 U	2.7 U					
FLUORANTHENE	NC	0.5 U	0.55 U	0.55 U					
FLUORENE	NC	3.2 J	0.33 J	2.7 U					
INDENO(1,2,3-CD)PYRENE	NC	0.5 U	0.55 U	0.55 U					
NAPHTHALENE	25	30	1.8 J	0.2 J					
PHENANTHRENE	NC	3.2 J	2.7 U	0.24 J					
PYRENE	NC	0.5 U	0.55 U	0.55 U					
VOLATILES (UG/L)									
BENZENE	5	0.33 J	2.5 U	2.5 U					
ETHYLBENZENE	700	5.2	2.5 U	2.5 U					
NAPHTHALENE	25	63 J	2.5 UJ	2.5 UJ					
TOLUENE	1000	0.17 J	2.5 U	2.5 U					
TOTAL XYLENES	10000	13	2.5 U	2.5 U					

TABLE 4-1

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING MCAS BEAUFORT, SOUTH CAROLINA PAGE 7 OF 11

			437 ELDERBERRY						
Parameter	Criteria ⁽¹⁾	LBMW140 BEALB-437-GW-MW140-1111	LBMW141 BEALB-437-GW-MW141-1111	LBMW142 BEALB-437-GW-MW142-1111					
		20111115	20111116	20111116					
		GW	GW	GW					
POLYNUCLEAR AROMATIC HYDRO	CARBONS (UG/L)								
1-METHYLNAPHTHALENE	10	0.55 U	0.55 U	0.12 J					
2-METHYLNAPHTHALENE	10	0.55 U	0.55 U	0.55 U					
ACENAPHTHENE	NC	0.55 U	0.55 U	0.55 U					
ACENAPHTHYLENE	NC	2.7 U	2.7 U	2.7 U					
ANTHRACENE	NC	0.55 U	0.55 U	0.55 U					
BENZO(A)ANTHRACENE	10	0.55 U	0.55 U	0.55 U					
BENZO(A)PYRENE	10	2.7 U	2.7 U	2.7 U					
BENZO(B)FLUORANTHENE	10	0.55 U	0.55 U	0.55 U					
BENZO(G,H,I)PERYLENE	NC	2.7 U	2.7 U	2.7 U					
BENZO(K)FLUORANTHENE	10	0.55 U	0.55 U	0.55 U					
CHRYSENE	10	0.55 U	0.55 U	0.55 U					
DIBENZO(A,H)ANTHRACENE	10	2.7 U	2.7 U	2.7 U					
FLUORANTHENE	NC	0.55 U	0.55 U	0.55 U					
FLUORENE	NC	2.7 U	2.7 U	2.7 U					
INDENO(1,2,3-CD)PYRENE	NC	0.55 U	0.55 U	0.55 U					
NAPHTHALENE	25	2.7 U	2.7 U	2.7 U					
PHENANTHRENE	NC	2.7 U	2.7 U	2.7 U					
PYRENE	NC	0.55 U	0.55 U	0.55 U					
VOLATILES (UG/L)									
BENZENE	5	2.5 U	2.5 U	2.5 U					
ETHYLBENZENE	700	2.5 U	2.5 U	2.5 U					
NAPHTHALENE	25	2.5 UJ	2.5 U	2.5 U					
TOLUENE	1000	2.5 U	2.5 U	2.5 U					
TOTAL XYLENES	10000	2.5 U	2.5 U	2.5 U					

TABLE 4-1

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING MCAS BEAUFORT, SOUTH CAROLINA PAGE 8 OF 11

			1054 GARDENIA						
Parameter	Criteria ⁽¹⁾	1054-DMW-1 BEALB-1054-GW-DMW-1-1111 20111108 GW	1054-MW-2 BEALB-1054-GW-MW-2-1111 20111108 GW	1054-MW-4 BEALB-1054-GW-MW4-1111 20111109 GW	1054-MW-7 BEALB-1054-GW-MW-7-1111 20111108 GW				
POLYNUCLEAR AROMATIC HYDROC	CARBONS (UG/L)								
1-METHYLNAPHTHALENE	10	0.5 U	0.5 U	0.5 U	0.55 U				
2-METHYLNAPHTHALENE	10	0.5 U	0.5 U	0.5 U	0.55 U				
ACENAPHTHENE	NC	0.5 U	0.5 U	0.5 U	0.55 U				
ACENAPHTHYLENE	NC	2.6 U	0.33 J	2.6 U	2.7 U				
ANTHRACENE	NC	0.5 U	0.5 U	0.5 U	0.55 U				
BENZO(A)ANTHRACENE	10	0.5 U	0.5 U	0.5 U	0.55 U				
BENZO(A)PYRENE	10	2.6 U	2.6 U	2.6 U	2.7 U				
BENZO(B)FLUORANTHENE	10	0.5 U	0.5 U	0.5 U	0.55 U				
BENZO(G,H,I)PERYLENE	NC	2.6 U	2.6 U	2.6 U	2.7 U				
BENZO(K)FLUORANTHENE	10	0.5 U	0.5 U	0.5 U	0.55 U				
CHRYSENE	10	0.5 U	0.5 U	0.5 U	0.55 U				
DIBENZO(A,H)ANTHRACENE	10	2.6 U	2.6 U	2.6 U	2.7 U				
FLUORANTHENE	NC	0.5 U	0.5 U	0.5 U	0.55 U				
FLUORENE	NC	2.6 U	2.6 U	2.6 U	2.7 U				
INDENO(1,2,3-CD)PYRENE	NC	0.5 U	0.5 U	0.5 U	0.55 U				
NAPHTHALENE	25	2.6 U	0.4 J	2.6 U	2.7 U				
PHENANTHRENE	NC	2.6 U	2.6 U	2.6 U	2.7 U				
PYRENE	NC	0.5 U	0.5 U	0.5 U	0.55 U				
VOLATILES (UG/L)									
BENZENE	5	2.5 U	2.5 U	2.5 U	2.5 U				
ETHYLBENZENE	700	2.5 U	2.5 U	2.5 U	2.5 U				
NAPHTHALENE	25	2.5 U	1.5 J	2.5 U	2.5 U				
TOLUENE	1000	2.5 U	2.5 U	2.5 U	0.17 J				
TOTAL XYLENES	10000	2.5 U	2.5 U	2.5 U	2.5 U				

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING MCAS BEAUFORT, SOUTH CAROLINA

TABLE 4-1

PAGE 9 OF 11

		1054 GARDENIA						
Parameter	Criteria ⁽¹⁾	LBMW127 BEALB-1054-MW127-1111	LBM BEALB-1054-GW-MW128-1111	W128 BEALB-1054-GW-MW128-1111-D	LBMW129 BEALB-1054-GW-MW129			
Parameter	Criteria							
		20111107	20111107	20111107	20111108			
		GW	GW	GW	GW			
POLYNUCLEAR AROMATIC HYDROG	CARBONS (UG/L)							
1-METHYLNAPHTHALENE	10	23	26	25	50			
2-METHYLNAPHTHALENE	10	15	19	19	62			
ACENAPHTHENE	NC	1.5	1.2	1.3	2.2			
ACENAPHTHYLENE	NC	2.6 U	2.6 U	2.6 U	2.6 U			
ANTHRACENE	NC	0.5 U	0.5 U	0.5 U	0.5 U			
BENZO(A)ANTHRACENE	10	0.5 U	0.5 U	0.5 U	0.5 U			
BENZO(A)PYRENE	10	2.6 U	2.6 U	2.6 U	2.6 U			
BENZO(B)FLUORANTHENE	10	0.5 U	0.5 U	0.5 U	0.5 U			
BENZO(G,H,I)PERYLENE	NC	2.6 U	2.6 U	0.29 J	0.14 J			
BENZO(K)FLUORANTHENE	10	0.5 U	0.5 U	0.5 U	0.5 U			
CHRYSENE	10	0.5 U	0.5 U	0.5 U	0.5 U			
DIBENZO(A,H)ANTHRACENE	10	2.6 U	2.6 U	2.6 U	2.6 U			
FLUORANTHENE	NC	0.5 U	0.5 U	0.5 U	0.14 J			
FLUORENE	NC	2.4 J	2.3 J	2.3 J	3.9 J			
INDENO(1,2,3-CD)PYRENE	NC	0.5 U	0.5 U	0.15 J	0.5 U			
NAPHTHALENE	25	7.7	14	14	30			
PHENANTHRENE	NC	2.4 J	1.2 J	1.3 J	3.4 J			
PYRENE	NC	0.5 U	0.5 U	0.5 U	0.1 J			
VOLATILES (UG/L)								
BENZENE	5	2.5 U	2.5 U	2.5 U	0.28 J			
ETHYLBENZENE	700	3.8 J	5.8	4.9 J	17			
NAPHTHALENE	25	18	43	36	77			
TOLUENE	1000	2.5 U	2.5 U	2.5 U	1 J			
TOTAL XYLENES	10000	1.6 J	4.1 J	3.2 J	26			

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING

MCAS BEAUFORT, SOUTH CAROLINA PAGE 10 OF 11

TABLE 4-1

		1472 CARDINAL						
Down water	(1)		W130 BEALB-1472-GW-MW130-1111-D	LBMW131	LBMW132			
Parameter	Criteria ⁽¹⁾	BEALB-1472-GW-MW130-1111		BEALB-1472-GW-MW131-1111	BEALB-1472-GW-MW132-1111			
		20111110	20111110	20111110	20111115			
		GW	GW	GW	GW			
POLYNUCLEAR AROMATIC HYDRO	CARBONS (UG/L)							
1-METHYLNAPHTHALENE	10	20	21	0.5 U	0.55 U			
2-METHYLNAPHTHALENE	10	29	30	0.5 U	0.55 U			
ACENAPHTHENE	NC	0.92 J	0.97 J	0.5 U	0.55 U			
ACENAPHTHYLENE	NC	2.6 U	2.5 U	2.6 U	2.7 U			
ANTHRACENE	NC	0.5 U	0.5 U	0.5 U	0.55 U			
BENZO(A)ANTHRACENE	10	0.5 U	0.5 U	0.5 U	0.55 U			
BENZO(A)PYRENE	10	2.6 U	2.5 U	2.6 U	2.7 U			
BENZO(B)FLUORANTHENE	10	0.5 U	0.5 U	0.5 U	0.55 U			
BENZO(G,H,I)PERYLENE	NC	2.6 U	2.5 U	2.6 U	2.7 U			
BENZO(K)FLUORANTHENE	10	0.5 U	0.5 U	0.5 U	0.55 U			
CHRYSENE	10	0.5 U	0.5 U	0.5 U	0.55 U			
DIBENZO(A,H)ANTHRACENE	10	2.6 U	2.5 U	2.6 U	2.7 U			
FLUORANTHENE	NC	0.5 U	0.5 U	0.5 U	0.55 U			
FLUORENE	NC	1.7 J	1.8 J	2.6 U	2.7 U			
INDENO(1,2,3-CD)PYRENE	NC	0.5 U	0.5 U	0.5 U	0.55 U			
NAPHTHALENE	25	24	25	2.6 U	2.7 U			
PHENANTHRENE	NC	0.89 J	1.1 J	2.6 U	2.7 U			
PYRENE	NC	0.5 U	0.5 U	0.5 U	0.55 U			
VOLATILES (UG/L)								
BENZENE	5	2.8 J	3.3 J	2.5 U	2.5 U			
ETHYLBENZENE	700	14	15	2.5 U	2.5 U			
NAPHTHALENE	25	56 J	83 J	2.5 U	2.5 UJ			
TOLUENE	1000	0.36 J	0.32 J	0.18 J	2.5 U			
TOTAL XYLENES	10000	15	15	2.5 U	2.5 U			

TABLE 4-1

SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER REPORT OF FINDINGS - LAUREL BAY MILITARY HOUSING MCAS BEAUFORT, SOUTH CAROLINA PAGE 11 OF 11

		1472 CARDINAL						
	(4)		W143	LBMW144	LBMW145			
Parameter	Criteria ⁽¹⁾	BEALB-1472-GW-MW143-1111	BEALB-1472-GW-MW143-1111-D	BEALB-1472-GW-MW144-1111	BEALB-1472-GW-MW145-1111			
		20111114	20111114	20111114	20111114			
		GW	GW	GW	GW			
POLYNUCLEAR AROMATIC HYDRO	CARBONS (UG/L)							
1-METHYLNAPHTHALENE	10	0.55 U	0.55 U	0.5 U	0.55 U			
2-METHYLNAPHTHALENE	10	0.55 U	0.55 U	0.5 U	0.55 U			
ACENAPHTHENE	NC	0.55 U	0.55 U	0.3 J	0.55 U			
ACENAPHTHYLENE	NC	2.7 UJ	2.7 UJ	2.6 U	2.7 U			
ANTHRACENE	NC	0.55 U	0.55 U	0.5 U	0.55 U			
BENZO(A)ANTHRACENE	10	0.55 U	0.55 U	0.5 U	0.55 U			
BENZO(A)PYRENE	10	2.7 U	2.7 U	2.6 U	2.7 U			
BENZO(B)FLUORANTHENE	10	0.55 U	0.55 U	0.5 U	0.55 U			
BENZO(G,H,I)PERYLENE	NC	2.7 U	2.7 U	2.6 U	2.7 U			
BENZO(K)FLUORANTHENE	10	0.55 U	0.55 U	0.5 U	0.55 U			
CHRYSENE	10	0.55 U	0.55 U	0.5 U	0.55 U			
DIBENZO(A,H)ANTHRACENE	10	2.7 U	2.7 U	2.6 U	2.7 U			
FLUORANTHENE	NC	0.55 U	0.55 U	0.5 U	0.55 U			
FLUORENE	NC	2.7 U	2.7 U	0.7 J	2.7 U			
INDENO(1,2,3-CD)PYRENE	NC	0.55 U	0.55 U	0.5 U	0.55 U			
NAPHTHALENE	25	2.7 U	2.7 U	2.6 U	2.7 U			
PHENANTHRENE	NC	2.7 U	2.7 U	2.6 U	2.7 U			
PYRENE	NC	0.55 U	0.55 U	0.5 U	0.55 U			
VOLATILES (UG/L)								
BENZENE	5	2.5 U	2.5 U	2.5 U	2.5 U			
ETHYLBENZENE	700	2.5 U	2.5 U	2.5 U	2.5 U			
NAPHTHALENE	25	2.5 UJ	2.5 UJ	2.5 UJ	13 J			
TOLUENE	1000	2.5 U	2.5 U	2.5 U	2.5 U			
TOTAL XYLENES	10000	2.5 U	2.5 U	2.5 U	2.5 U			

NOTES

(1) South Carolina State Screening Value are Risk Based Screening Levels (RBSLs) for groundwater (SCDHEC, 2011).

All positive results have been bolded.

Shaded values indicate exceedance of criteria.

NC = No Criteria Available.

DATA QUALIFIERS:

U = Indicates the parameter was not detected.

UJ = Indicates the parameter was not detected; however, the detection limit is estimated.

J = Indicates the result is estimated.

Table 4 Summary of Analytical Results Laurel Bay Military Housing Area MCAS Beaufort, South Carolina

LBMH Area Address Well ID			282 Birch Drive MW136	9		282 Birch Drive MW137		282 Birch Drive MW138		2	282 Birch Drive MW139	
Sample ID	SCDHEC	BEALB2	82MW136WG2	20130730	BEALB2	82MW137WG20130	730	BEALB28	2MW138WG20130730	BEALB28	32MW139WG2	20130730
Lab Sample ID	RBSL ¹		OG30003-016			OG30003-014			OG30003-015		OG30003-017	
Date Collected			07/30/13			07/30/13			07/30/13		07/30/13	
Volatile Organic Compour	nds by Met	hod 8260E	3 (µg/L)							•		
Benzene	5		0.41	J/	<	0.25		<	0.25	<	0.25	
Ethylbenzene	700		1.2		<	0.25		<	0.25	<	0.25	
Naphthalene	25		57		<	0.25		<	0.25		0.41	J/
Toluene	1,000	<	0.25		<	0.25		<	0.25	<	0.25	
Xylenes, Total	10,000	<	0.25		<	0.25		<	0.25	<	0.25	
Semivolatile Organic Com	pounds by	/ Method 8	270D (µg/L)							•		
Benzo(a)anthracene	10	<	0.11		<	0.10		<	0.10	<	0.10	
Benzo(b)fluoranthene	10	<	0.11		<	0.10		<	0.10	<	0.10	
Benzo(k)fluoranthene	10	<	0.11		<	0.10		<	0.10	<	0.10	
Chrysene	10	<	0.11		<	0.10		<	0.10	<	0.10	
Dibenz(a,h)anthracene	10	<	0.11		<	0.10		<	0.10	<	0.10	

LBMH Area Address		388 Acorn Drive		;	388 Acorn Drive		388 Acorn Drive			388 Acorn Drive	
Well ID			MW110			MW110-C			MW111		MW112
Sample ID	SCDHEC	BEALB3	88MW110WG2	0130729	BEALB38	8MW110WG20130729	P-C E	BEALB38	88MW111WG20130729	BEALB3	88MW112WG20130729
Lab Sample ID	RBSL ¹		OG30003-001			OG30003-002			OG30003-004		OG30003-003
Date Collected			07/29/13			07/29/13			07/29/13		07/29/13
Volatile Organic Compour	nds by Met	hod 8260B	β (μg/L)								
Benzene	5		0.25	J/	<	0.25		<	0.25	<	0.25
Ethylbenzene	700		15		<	0.25		<	0.25	<	0.25
Naphthalene	25		72		<	0.25		<	0.25		14
Toluene	1,000	<	0.25		<	0.25		<	0.25	<	0.25
Xylenes, Total	10,000		23		<	0.25		<	0.25	<	0.25
Semivolatile Organic Com	pounds by	/ Method 8	270D (µg/L)								
Benzo(a)anthracene	10		0.33			NA		<	0.10	<	0.11
Benzo(b)fluoranthene	10		0.19	J/		NA		<	0.10	<	0.11
Benzo(k)fluoranthene	10	<	0.11			NA		<	0.10	<	0.11
Chrysene	10		0.20	J/		NA		<	0.10	<	0.11
Dibenz(a,h)anthracene	10	<	0.11			NA		<	0.10	<	0.11

LBMH Area Address			391 Acorn Drive		1 :	391 Acorn Drive			391 Acorn Drive		3	91 Acorn Drive	
Well ID			MW113			MW113-C			MW114			MW114-A	
Sample ID	SCDHEC	BEALB3	91MW113WG201	30730	BEALB39	1MW113WG201	30730-C	BEALB3	91MW114WG20	130729	BEALB391	MW114WG20	130729-A
Lab Sample ID	RBSL ¹		OG30003-009			OG30003-010			OG30003-007		(DG30003-008	
Date Collected			07/30/13			07/30/13			07/29/13			07/29/13	
Volatile Organic Compou	nds by Met	thod 8260B											
Benzene	5	<	0.25		<	0.25		<	0.25		<	0.25	
Ethylbenzene	700	<	0.25		<	0.25		<	0.25		<	0.25	
Naphthalene	25	<	0.25		<	0.25			6.6			6.3	
Toluene	1,000	<	0.25		<	0.25		<	0.25		<	0.25	
Xylenes, Total	10,000	<	0.25		<	0.25		<	0.25		<	0.25	
Semivolatile Organic Con	npounds by	y Method 8	270D (μg/L)										
Benzo(a)anthracene	10	<	0.11			NA		<	0.11		<	0.11	
Benzo(b)fluoranthene	10	<	0.11			NA		<	0.11		<	0.11	
Benzo(k)fluoranthene	10	<	0.11		1	NA		<	0.11		<	0.11	
Chrysene	10	<	0.11			NA		<	0.11		<	0.11	
Dibenz(a,h)anthracene	10	<	0.11		1	NA		<	0.11		<	0.11	

LBMH Area Address			391 Acorn Drive		;	391 Acorn Drive			398 Acorn Drive		39	8 Acorn Drive	
Well ID			MW115			MW116			MW104			MW105	
Sample ID	SCDHEC	BEALB3	91MW115WG2013072	29	BEALB3	91MW116WG2013	0729	BEALB3	98MW104WG20130	0730	BEALB398	3MW105WG20	0130730
Lab Sample ID	RBSL ¹		OG30003-006			OG30003-005			OG30003-013		C	G30003-012	
Date Collected			07/29/13			07/29/13			07/30/13			07/30/13	
Volatile Organic Compoun	ds by Met												
Benzene	5	<	0.25		<	0.25		<	0.25		<	0.25	
Ethylbenzene	700	<	0.25		<	0.25		<	0.25		<	0.25	
Naphthalene	25	<	0.25			3.7		<	0.25		<	0.25	
Toluene	1,000	<	0.25		<	0.25		<	0.25		<	0.25	
Xylenes, Total	10,000	<	0.25		<	0.25		<	0.25		<	0.25	
Semivolatile Organic Com	pounds by	/ Method 8	270D (µg/L)										
Benzo(a)anthracene	10	<	0.12		<	0.10		<	0.10		<	0.11	
Benzo(b)fluoranthene	10	<	0.12		<	0.10		<	0.10		<	0.11	
Benzo(k)fluoranthene	10	<	0.12		<	0.10		<	0.10		<	0.11	
Chrysene	10	<	0.12		<	0.10		<	0.10		<	0.11	
Dibenz(a,h)anthracene	10	<	0.12		<	0.10		<	0.10		<	0.11	

Table 4 Summary of Analytical Results Laurel Bay Military Housing Area MCAS Beaufort, South Carolina

LBMH Area Address Well ID			398 Acorn Drive	Э	437	' Elderberry D MW133	rive	437	⁷ Elderberry D MW133-A	rive	437	Elderberry Drive MW134
Sample ID	SCDHEC	BEALB3	98MW106WG2	20130730	BEALB43	37MW133WG	20130731	BEALB43	7MW133WG2	20130731-A	BEALB43	7MW134WG20130731
Lab Sample ID	RBSL ¹		OG30003-011			OH01003-006	5		OH01003-007	7	(DH01003-008
Date Collected			07/30/13			07/31/13			07/31/13			07/31/13
Volatile Organic Compoun	ds by Met	hod 8260E	β (μg/L)									
Benzene	5		0.71		0.93				0.96		<	0.50
Ethylbenzene	700		0.18	J/	25				26		<	0.50
Naphthalene	25		0.93			110			110			6.9
Toluene	1,000	<	0.25			0.57			0.61		<	0.50
Xylenes, Total	10,000	<	0.25			49			50		<	0.50
Semivolatile Organic Com	pounds by	Method 8	270D (µg/L)									
Benzo(a)anthracene	10	<	0.11		<	0.21	*/Q	<	0.21	*/Q	<	0.21
Benzo(b)fluoranthene	10	<	0.11		<	0.21	*/Q	<	0.21	*/Q	<	0.21
Benzo(k)fluoranthene	10	<	0.11		< 0.21 */Q			<	0.21	*/Q	<	0.21
Chrysene	10	<	0.11		< 0.21 */Q			<	0.21	*/Q	<	0.21
Dibenz(a,h)anthracene	10	<	0.11		<	0.21	*/Q	<	0.21	*/Q	<	0.21

LBMH Area Address		43	7 Elderberry Drive		43	7 Elderberry Driv	/e	43	37 Elderberry Dr	ive	437	Elderberry Dr	ive
Well ID			MW135		-	MW140			MW140-C			MW141	
Sample ID	SCDHEC	BEALB4	37MW135WG2013	30731	BEALB43	37MW140WG20	130731	BEALB43	37MW140WG20	130731-C	BEALB43	7MW141WG2	0130731
Lab Sample ID	RBSL ¹		OH01003-005			OH01003-001			OH01003-002		(DH01003-003	
Date Collected			07/31/13			07/31/13			07/31/13			07/31/13	
Volatile Organic Compour	nds by Met	thod 8260B	β (μg/L)										
Benzene	5	<	0.50		<	0.50		<	0.50		<	0.50	
Ethylbenzene	700	<	0.50		<	0.50		<	0.50		<	0.50	
Naphthalene	25	<	0.50		<	0.50		<	0.50		<	0.50	
Toluene	1,000	<	0.50		<	0.50		<	0.50		<	0.50	
Xylenes, Total	10,000	<	0.50		<	0.50		<	0.50		<	0.50	
Semivolatile Organic Com	pounds by	y Method 8	270D (µg/L)										
Benzo(a)anthracene	10	<	0.21		<	0.21			NA		<	0.21	
Benzo(b)fluoranthene	10	<	0.21		<	0.21			NA		<	0.21	
Benzo(k)fluoranthene	10	<	0.21		<	0.21			NA		<	0.21	
Chrysene	10	<	0.21		<	0.21			NA		<	0.21	
Dibenz(a,h)anthracene	10	<	0.21		<	0.21			NA		<	0.21	

LBMH Area Address		43	7 Elderberry D	rive	44	1 Elderberry Drive		441	Elderberry Drive	441	Elderberry Di	rive
Well ID			MW142			MW117			MW118		MW119	
Sample ID	SCDHEC	BEALB43	37MW142WG	20130731	BEALB4	41MW117WG20130	0731	BEALB44	1MW118WG20130731	BEALB44	1MW119WG2	20130731
Lab Sample ID	RBSL ¹		OH01003-004	ļ		OH01003-009			OH01003-010		DH01003-011	
Date Collected			07/31/13			07/31/13			07/31/13		07/31/13	
Volatile Organic Compou	nds by Met	hod 8260B										
Benzene	5	<			<	0.50		<	0.50	<	0.50	
Ethylbenzene	700	<	0.50		<	0.50		<	0.50		0.22	J/
Naphthalene	25		0.33	J/	<	0.50			6.9		7.0	
Toluene	1,000	<	0.50		<	0.50		<	0.50	<	0.50	
Xylenes, Total	10,000		0.18	J/	<	0.50		<	0.50	<	0.50	
Semivolatile Organic Com	pounds by	Method 8	270D (μg/L)									
Benzo(a)anthracene	10	<	0.21		<	0.21		<	0.21	<	0.21	
Benzo(b)fluoranthene	10	<	0.21		<	0.21		<	0.21	<	0.21	
Benzo(k)fluoranthene	10	<	0.21		<	0.21		<	0.21	<	0.21	
Chrysene	10	<	0.21		<	0.21		<	0.21	<	0.21	
Dibenz(a,h)anthracene	10	<	0.21		<	0.21		<	0.21	<	0.21	

LBMH Area Address		10	54 Gardenia Drive		1054 Ga	rdenia Drive		054 Gardenia Drive		1054	Gardenia Drive	
Well ID			DMW1		- 1	MW2		MW2-A			MW4	
Sample ID	SCDHEC	1054	DMW1WG20130801		1054MW2	WG20130801	105	4MW2WG20130801-	A	1054N	1W4WG20130801	
Lab Sample ID	RBSL ¹		OH01003-017		OH0	1003-018		OH01003-019		C)H01003-020	
Date Collected			08/01/13		30	/01/13		08/01/13			08/01/13	
Volatile Organic Compoun	ds by Met	thod 8260B	(μg/L)									
Benzene	5	<	0.50	<		0.50	<	0.50		<	0.50	
Ethylbenzene	700	<	0.50	<		0.50	<	0.50		<	0.50	
Naphthalene	25	<	0.50			3.7		3.7		<	0.50	
Toluene	1,000	<	0.50	<		0.50	<	0.50		<	0.50	
Xylenes, Total	10,000	<	0.50	<		0.50	<	0.50		<	0.50	
Semivolatile Organic Com	pounds by	y Method 8	270D (μg/L)									
Benzo(a)anthracene	10	<	0.20	<		0.21	<	0.21		<	0.20	
Benzo(b)fluoranthene	10	<	0.20	<		0.21	<	0.21		<	0.20	
Benzo(k)fluoranthene	10	<	0.20	<		0.21	<	0.21		<	0.20	
Chrysene	10	<	0.20	<		0.21	<	0.21		<	0.20	
Dibenz(a,h)anthracene	10	<	0.20	<		0.21	<	0.21		<	0.20	

Table 4 Summary of Analytical Results Laurel Bay Military Housing Area MCAS Beaufort, South Carolina

LBMH Area Address		10	054 Gardenia Driv	е	10	054 Gardenia	Drive	10	54 Gardenia [Drive	10	54 Gardenia Driv	е
Well ID			MW7			MW127			MW128			MW128-C	
Sample ID	SCDHEC	105	4MW7WG201308	301	BEALB1	054MW127W	G20130801	BEALB10)54MW128W(320130801	BEALB105	4MW128WG201	30801-C
Lab Sample ID	RBSL ¹		OH01003-016			OH01003-0	14		OH01003-01	2		OH01003-013	
Date Collected			08/01/13		08/01/13				08/01/13			08/01/13	
Volatile Organic Compoun	ds by Met	hod 8260	B (µg/L)										
Benzene	5	<	0.50		<	0.50		<	0.50		<	0.50	
Ethylbenzene	700	<	0.50			2.5			4.4		<	0.50	
Naphthalene	25		3.6			25			42		<	0.50	
Toluene	1,000	<	0.50		<	0.50			0.20	J/	<	0.50	
Xylenes, Total	10,000	<	0.50			0.62			6.3		<	0.50	
Semivolatile Organic Com	pounds by	Method 8	8270D (µg/L)										
Benzo(a)anthracene	10	<	0.21		<	0.21	*/Q	<	0.21	*/Q		NA	
Benzo(b)fluoranthene	10	<	0.21		<	0.21	*/Q	<	0.21	*/Q		NA	
Benzo(k)fluoranthene	10	<	0.21		<	0.21	*/Q	<	0.21	*/Q		NA	
Chrysene	10	<	0.21		<	0.21	*/Q	<	0.21	*/Q		NA	
Dibenz(a,h)anthracene	10	<	0.21		<	0.21	*/Q	<	0.21	*/Q		NA	

LBMH Area Address		10	54 Gardenia Di	rive	14	72 Cardinal La	ine	14	72 Cardinal La	ane	147	'2 Cardinal Lane
Well ID			MW129			MW130			MW130-A			MW131
Sample ID	SCDHEC	BEALB10	54MW129WG	20130801	BEALB14	72MW130WG	20130802	BEALB147	2MW130WG2	20130802-A	BEALB147	2MW131WG20130802
Lab Sample ID	RBSL ¹		OH01003-015			OH03004-006			OH03004-007	7	(OH03004-005
Date Collected			08/01/13			08/02/13			08/02/13			08/02/13
Volatile Organic Compour	nds by Met	hod 8260B	110 /									
Benzene	5		0.32	J/		3.3			3.2		<	0.25
Ethylbenzene	700		18			13			13		<	0.25
Naphthalene	25		73			37			37		<	0.25
Toluene	1,000		2.1			0.33	J/		0.32	J/	<	0.25
Xylenes, Total	10,000		35			19			18		<	0.25
Semivolatile Organic Com	pounds by	Method 8	270D (µg/L)									
Benzo(a)anthracene	10	<	0.21		<	0.11	/Q	<	0.11		<	0.11
Benzo(b)fluoranthene	10	<	0.21		<	0.11	/Q	<	0.11		<	0.11
Benzo(k)fluoranthene	10	<	0.21		<	0.11	/Q	<	0.11		<	0.11
Chrysene	10	<	0.21		<	0.11	/Q	<	0.11		<	0.11
Dibenz(a,h)anthracene	10	<	0.21		<	0.11	/Q	<	0.11		<	0.11

LBMH Area Address		14	472 Cardinal Lane		14	172 Cardinal Lane		14	72 Cardinal La	ane	147	2 Cardinal Lane	
Well ID			MW132			MW143			MW144			MW144-C	
Sample ID	SCDHEC	BEALB14	472MW132WG2013	80802	BEALB14	472MW143WG201308	802 I	BEALB14	72MW144WG	20130802	BEALB1472	MW144WG2013	30802-0
Lab Sample ID	RBSL ¹		OH03004-004			OH03004-003			OH03004-001		(DH03004-002	
Date Collected			08/02/13			08/02/13			08/02/13			08/02/13	
Volatile Organic Compoι	ınds by Met	thod 8260E	3 (μg/L)										
Benzene	5	<	0.25		<	0.25		<	0.25		<	0.25	
Ethylbenzene	700	<	0.25		<	0.25		<	0.25		<	0.25	
Naphthalene	25	<	0.25			3.8			4.1		<	0.25	
Toluene	1,000	<	0.25		<	0.25		<	0.25		<	0.25	
Xylenes, Total	10,000	<	0.25		<	0.25		<	0.25		<	0.25	
Semivolatile Organic Cor	npounds by	y Method 8	3270D (µg/L)										
Benzo(a)anthracene	10	<	0.10		<	0.11		<	0.11	/Q		NA	
Benzo(b)fluoranthene	10	<	0.10		<	0.11		<	0.11	/Q		NA	
Benzo(k)fluoranthene	10	<	0.10		<	0.11		<	0.11	/Q		NA	
Chrysene	10	<	0.10		<	0.11		<	0.11	/Q		NA	
Dibenz(a,h)anthracene	10	<	0.10		<	0.11		<	0.11	/Q		NA	

LBMH Area Address		14	472 Cardinal Lane	\neg
Well ID			MW145	
Sample ID	SCDHEC	BEALB14	472MW145WG2013080	11
Lab Sample ID	RBSL ¹		OH01003-021	
Date Collected			08/01/13	
Volatile Organic Compour	ds by Met	hod 8260E	3 (μg/L)	
Benzene	5	<	0.50	
Ethylbenzene	700	<	0.50	
Naphthalene	25	<	0.50	
Toluene	1,000	<	0.50	
Xylenes, Total	10,000	<	0.50	
Semivolatile Organic Com	pounds by	/ Method 8	3270D (µg/L)	
Benzo(a)anthracene	10	<	0.21	
Benzo(b)fluoranthene	10	<	0.21	
Benzo(k)fluoranthene	10	<	0.21	
Chrysene	10	<	0.21	
Dibenz(a,h)anthracene	10	<	0.21	
Netec				_

- Dibenz(a,h)anthracene 10 < v.c.i
 Notes:

 1 SCDHEC RBSL South Carolina Department of Health and Environmental Control Risk Based Screening Level
 -A Indicates a field duplicate sample.
 -C Indicates a trip blank sample.

 BOLD font indicates the analyte was detected.
 LBMH Laurel Bay Military Housing
 NA Not Analyzed
 NS No Standard
 Shading indicates the concentration exceeds the SCDHEC RBSL.
 See Table 6 for explanation of data qualifiers.

 µg/L micrograms per liter

Table 4 Summary of Analytical Results - September 2014 Laurel Bay Military Housing Area MCAS Beaufort, South Carolina

LBMH Area Address			282 Birch Drive)		282 Birch Driv	re .		282 Birch Drive		2	82 Birch Drive
Well ID			MW136			MW136-a			MW136-c			MW137
Sample ID	SCDHEC	BEALB2	82MW136WG2	20140912	BEALB28	2MW136WG2	0140912-a	BEALB28	2MW136WG2014091	2-c BE	ALB28	2MW137WG20140912
Lab Sample ID	RBSL ¹		PI13008-002			PI13008-003	3		PI13008-001			PI13008-005
Date Collected			09/12/14			09/12/14			09/12/14			09/12/14
Volatile Organic Compou	nds by Met	hod 8260B										
Benzene	5	<				0.40		<	0.40		<	0.40
Ethylbenzene	700		0.76	J/		0.76	J/	<	0.20		<	0.20
Naphthalene	25		14			15		<	0.20		<	0.20
Toluene	1,000	<	0.20		<	0.20		<	0.20		<	0.20
Xylenes, Total	10,000	<	0.40		<	0.40		<	0.40		<	0.40
Semivolatile Organic Con	pounds by	/ Method 8	270D (μg/L)									
Benzo(a)anthracene	10	<	0.040		<	0.040			NA		<	0.040
Benzo(b)fluoranthene	10	<	0.040		<	0.040			NA		<	0.040
Benzo(k)fluoranthene	10	<	0.040		< 0.040			NA		<	0.040	
Chrysene	10	<	0.040		< 0.040				NA		<	0.040
Dibenz(a,h)anthracene	10	<	0.080		<	0.080			NA		<	0.080

LBMH Area Address			282 Birch Drive		282 Birch Drive			282 Birch Drive		388 Acorn Drive	е
Well ID			MW138		MW139			MW139-d		MW110	
Sample ID	SCDHEC	BEALB2	82MW138WG20140912	BEALE	3282MW139WG2014	40912	BEALB28	2MW139WG20140912-	d BEALB3	88MW110WG2	20140910
Lab Sample ID	RBSL ¹		PI13008-004		PI13008-006			PI13008-007		PI11022-002	
Date Collected			09/12/14		09/12/14			09/12/14		09/10/14	
Volatile Organic Compour	nds by Met	hod 8260E	β (μg/L)								
Benzene	5	<	0.40	<	0.40		<	0.40		2	J/
Ethylbenzene	700	<	0.20	<	0.20		<	0.20		14	
Naphthalene	25	<	0.20	<	0.20		<	0.20		71	
Toluene	1,000	<	0.20	<	0.20		<	0.20	<	0.20	
Xylenes, Total	10,000	<	0.40	<	0.40		<	0.40		18	
Semivolatile Organic Com	pounds by	/ Method 8	270D (μg/L)								
Benzo(a)anthracene	10	<	0.040	<	0.040		<	0.040	<	0.040	
Benzo(b)fluoranthene	10	<	0.040	<	0.040		<	0.040	<	0.040	
Benzo(k)fluoranthene	10	<	0.040	<	0.040		<	0.040	<	0.040	
Chrysene	10	<	0.040	<	0.040		<	0.040	<	0.040	
Dibenz(a,h)anthracene	10	<	0.080	<	0.080		<	0.080	<	0.080	

LBMH Area Address			388 Acorn Drive		;	388 Acorn Dri	/e	;	388 Acorn Drive	3	91 Acorn Drive
Well ID			MW110-c			MW111			MW112		MW113
Sample ID	SCDHEC	BEALB388MW110WG20140910-c		BEALB388MW111WG20140910			BEALB3	88MW112WG20140910	BEALB39	1MW113WG20140910	
Lab Sample ID	RBSL ¹	PI11022-001			PI11022-003	}		PI11022-004		PI11022-007	
Date Collected			09/10/14		09/11/14 09/10/14			09/10/14			
Volatile Organic Compou	nds by Met	hod 8260B	β (μg/L)								
Benzene	5	<	0.40		<	0.40		<	0.40	<	0.40
Ethylbenzene	700	<	0.20		<	0.20		<	0.20	<	0.20
Naphthalene	25	<	0.20			0.48	J/		26	<	0.20
Toluene	1,000	<	0.20		<	0.20		<	0.20	<	0.20
Xylenes, Total	10,000	<	0.40		<	0.40		<	0.40	<	0.40
Semivolatile Organic Con	pounds by	Method 8	270D (µg/L)								
Benzo(a)anthracene	10		NA		<	0.040		<	0.040	<	0.040
Benzo(b)fluoranthene	10		NA		<	0.040		<	0.040	<	0.040
Benzo(k)fluoranthene	10		NA		<	0.040		<	0.040	<	0.040
Chrysene	10		NA		<	0.040		<	0.040	<	0.040
Dibenz(a,h)anthracene	10		NA		<	0.080		<	0.080	<	0.080

LBMH Area Address			391 Acorn Drive			Acorn Driv	/e		391 Acorn Driv	/e		398 Acorn Drive	
Well ID			MW114			MW115			MW116			MW104	
Sample ID	SCDHEC	BEALB3	891MW114WG20140910	BEA	LB391M	W115WG	20140910	BEALB	391MW116WG	20140910	BEALB3	98MW104WG2014	10910
Lab Sample ID	RBSL ¹		PI11022-008		PI1	1022-005	i		PI11022-006			PI11022-010	
Date Collected			09/10/14		09/10/14 09/10/14				09/10/14				
Volatile Organic Compoun	ds by Met												
Benzene	5	<	0.40	<		0.40		<	0.40		<	0.40	
Ethylbenzene	700	<	0.20	<		0.20		<	0.20		<	0.20	
Naphthalene	25		12			0.89	J/		0.57	J/	<	0.20	
Toluene	1,000	<	0.20	<		0.20		<	0.20		<	0.20	
Xylenes, Total	10,000	<	0.40	<		0.40		<	0.40		<	0.40	
Semivolatile Organic Com	pounds by	Method 8	3270D (µg/L)										
Benzo(a)anthracene	10	<	0.040	<		0.040		<	0.040		<	0.040	
Benzo(b)fluoranthene	10	<	0.040	<		0.040		<	0.040		<	0.040	
Benzo(k)fluoranthene	10	<	0.040	<		0.040		<	0.040		<	0.040	
Chrysene	10	<	0.040	<		0.040		<	0.040		<	0.040	
Dibenz(a,h)anthracene	10	<	0.080	<		0.080		<	0.080		<	0.080	

Table 4 Summary of Analytical Results - September 2014 Laurel Bay Military Housing Area MCAS Beaufort, South Carolina

LBMH Area Address			398 Acorn Drive		3	398 Acorn Drive		43	7 Elderberry [Drive	437	Elderberry Dr	ive
Well ID			MW105			MW106			MW133			MW133-a	
Sample ID	SCDHEC	BEALB3	98MW105WG201409	10	BEALB39	98MW106WG201	40910	BEALB4	37MW133WG	320140911	BEALB437	MW133WG20	0140911-a
Lab Sample ID	RBSL ¹		PI11022-009			PI11022-011			PI12015-006	6		PI12015-007	
Date Collected			09/10/14			09/10/14			09/11/14			09/11/14	
Volatile Organic Compour	nds by Met	hod 8260B	(μg/L)					0.40 1/					
Benzene	5	<	0.40		<	0.40			0.40	J/		0.41	J/
Ethylbenzene	700	<	0.20		<	0.20			8.8			9.3	
Naphthalene	25	<	0.20		<	0.20			41			45	
Toluene	1,000	<	0.20		<	0.20		<	0.20		<	0.20	
Xylenes, Total	10,000	<	0.40		<	0.40			18			19	
Semivolatile Organic Com	pounds by	/ Method 8	270D (μg/L)										
Benzo(a)anthracene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Benzo(b)fluoranthene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Benzo(k)fluoranthene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Chrysene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Dibenz(a,h)anthracene	10	<	0.080		<	0.080		<	0.080		<	0.080	

LBMH Area Address		43	37 Elderberry Drive	43	37 Elderberry Drive	4	37 Elderberry Drive	437	Elderberry Drive
Well ID			MW134		MW135		MW140		MW141
Sample ID	SCDHEC	BEALB4	37MW134WG20140911	BEALB4	137MW135WG20140911	BEALB	437MW140WG20140911	BEALB43	37MW141WG20140911
Lab Sample ID	RBSL ¹		PI12015-010		PI12015-009		PI12015-003		PI12015-001
Date Collected			09/11/14		09/11/14		09/11/14		09/11/14
Volatile Organic Compour	nds by Met								
Benzene	5	<	0.40	<	0.40	<	0.40	<	0.40
Ethylbenzene	700	<	0.20	<	0.20	<	0.20	<	0.20
Naphthalene	25		1.1	<	0.20	<	0.20	<	0.20
Toluene	1,000	<	0.20	<	0.20	<	0.20	<	0.20
Xylenes, Total	10,000	<	0.40	<	0.40	<	0.40	<	0.40
Semivolatile Organic Com	pounds by	/ Method 8	3270D (µg/L)						
Benzo(a)anthracene	10	<	0.040	<	0.040	<	0.040	<	0.040
Benzo(b)fluoranthene	10	<	0.040	<	0.040	<	0.040	<	0.040
Benzo(k)fluoranthene	10	<	0.040	<	0.040	<	0.040	<	0.040
Chrysene	10	<	0.040	<	0.040	<	0.040	<	0.040
Dibenz(a,h)anthracene	10	<	0.080	<	0.080	<	0.080	<	0.080

LBMH Area Address		43	7 Elderberry Drive		437	Elderberry Drive		44	1 Elderberry D	rive	441	Elderberry Drive
Well ID			MW141-c			MW142			MW117			MW118
Sample ID	SCDHEC	BEALB43	37MW141WG20140911	-c BE	BEALB437MW142WG20140911		BEALB4	41MW117WG	20140911	BEALB44	1MW118WG2014091	
Lab Sample ID	RBSL ¹	PI12015-013			PI12015-002			PI12015-008			PI12015-005	
Date Collected			09/11/14		09/11/14				09/11/14			09/11/14
Volatile Organic Compou	nds by Met											
Benzene	5	<	0.40		<	0.40		<	0.40		<	0.40
Ethylbenzene	700	<	0.20		<	0.20		<	0.20		<	0.20
Naphthalene	25	<	0.20		<	0.20			0.54	J/		2.7
Toluene	1,000	<	0.20		<	0.20		<	0.20		<	0.20
Xylenes, Total	10,000	<	0.40		<	0.40		<	0.40		<	0.40
Semivolatile Organic Con	pounds by	/ Method 8	270D (µg/L)									
Benzo(a)anthracene	10		NA		<	0.040		<	0.040		<	0.040
Benzo(b)fluoranthene	10		NA		<	0.040		<	0.040		<	0.040
Benzo(k)fluoranthene	10		NA		<	0.040		<	0.040		<	0.040
Chrysene	10		NA		<	0.040		<	0.040		<	0.040
Dibenz(a,h)anthracene	10		NA		<	0.080		<	0.080		<	0.080

LBMH Area Address Well ID		44	1 Elderberry Di MW119	rive	10	54 Gardenia Drive DMW1		105	4 Gardenia D MW2	rive	105	4 Gardenia Drive MW4	
Sample ID	SCDHEC	BEALB4	41MW119WG2	20140911	1054	DMW1WG201409	11	1054	MW2WG2014	0911	1054	MW4WG2014091	11
Lab Sample ID	RBSL ¹	PI12015-004			PI12015-016			PI12015-019			PI12015-011		
Date Collected		09/11/14			09/11/14			09/11/14			09/11/14		
Volatile Organic Compoun	ds by Met												
Benzene	5	<	0.40		<	0.40		<	0.40		<	0.40	
Ethylbenzene	700		0.33	J/	<	0.20		<	0.20		<	0.20	
Naphthalene	25		8.1		<	0.20			0.45	J/	<	0.20	
Toluene	1,000	<	0.20		<	0.20		<	0.20		<	0.20	
Xylenes, Total	10,000	<	0.40		<	0.40		<	0.40		<	0.40	
Semivolatile Organic Com	pounds by	/ Method 8	270D (µg/L)										
Benzo(a)anthracene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Benzo(b)fluoranthene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Benzo(k)fluoranthene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Chrysene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Dibenz(a,h)anthracene	10	<	0.080		< 0.080		< 0.080			<	0.080		

Summary of Analytical Results - September 2014 Laurel Bay Military Housing Area MCAS Beaufort, South Carolina

LBMH Area Address		10	54 Gardenia Drive		10	54 Gardenia Drive)	105	54 Gardenia Drive	1	105	4 Gardenia Dr	ive
Well ID			MW7			MW127			MW128			MW129	
Sample ID	SCDHEC	105	4MW7WG20140911	1	BEALB10	54MW127WG20	140911	BEALB10	54MW128WG201	40911	BEALB10	54MW129WG2	20140911
Lab Sample ID	RBSL ¹		PI12015-014			PI12015-012			PI12015-015			PI12015-017	
Date Collected			09/11/14			09/11/14			09/11/14			09/11/14	
Volatile Organic Compour	nds by Met	hod 8260E	3 (μg/L)		. 040								
Benzene	5	<	0.40		<	0.40		<	0.40			0.19	J/
Ethylbenzene	700	<	0.20			2.3			2.4			13	
Naphthalene	25	<	0.20			15			18			54	
Toluene	1,000		1.5		<	0.20		<	0.20			1.3	
Xylenes, Total	10,000	<	0.40			1.1			2.5			25	
Semivolatile Organic Com	pounds by	/ Method 8	3270D (µg/L)										
Benzo(a)anthracene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Benzo(b)fluoranthene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Benzo(k)fluoranthene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Chrysene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Dibenz(a,h)anthracene	10	<	0.080		<	0.080		<	0.080		<	0.080	

LBMH Area Address		10	54 Gardenia Dr	ive	14	72 Cardinal La	ne	14	72 Cardinal La	ane	147	72 Cardinal Lane
Well ID			MW129-a			MW130			MW130-a			MW131
Sample ID	SCDHEC	BEALB10	54MW129WG2	0140911-a	BEALB14	72MW130WG	20140912	BEALB147	72MW130WG2	20140912-a	BEALB147	72MW131WG20140912
Lab Sample ID	RBSL ¹		PI12015-018			PI13008-012			PI13008-013			PI13008-010
Date Collected			09/11/14		09/12/14 09/12/14				09/12/14			
Volatile Organic Compou	nds by Met	thod 8260E	3 (µg/L)									
Benzene	5		0.19	J/		5.6			5.8		<	0.40
Ethylbenzene	700		12			17			19		<	0.20
Naphthalene	25		44			36			40		<	0.20
Toluene	1,000		1.3			0.40	J/		0.42	J/	<	0.20
Xylenes, Total	10,000		22			14	/J		18		<	0.40
Semivolatile Organic Con	pounds b	y Method 8	3270D (µg/L)									
Benzo(a)anthracene	10	<	0.040		<	0.040		<	0.040		<	0.040
Benzo(b)fluoranthene	10	<	0.040		<	0.040		<	0.040		<	0.040
Benzo(k)fluoranthene	10	<	0.040		<	0.040		<	0.040		<	0.040
Chrysene	10	<	0.040		<	0.040		<	0.040		<	0.040
Dibenz(a,h)anthracene	10	<	0.080		<	0.080		<	0.080		<	0.080

LBMH Area Address		14	172 Cardinal Lane		14	72 Cardinal Lane		14	72 Cardinal Lane		147	2 Cardinal Lan	e
Well ID			MW132			MW143			MW144			MW145	
Sample ID	SCDHEC	BEALB14	472MW132WG201409	912 E	BEALB14	72MW143WG201	40912	BEALB14	72MW144WG20140	912 B	BEALB147	2MW145WG2	0140912
Lab Sample ID	RBSL ¹		PI13008-014			PI13008-009			PI13008-008		1	PI13008-011	
Date Collected			09/12/14		09/12/14			09/12/14			09/12/14		
Volatile Organic Compou	nds by Met	thod 8260E	β (μg/L)										
Benzene	5	<	0.40		<	0.40		<	0.40		<	0.40	
Ethylbenzene	700	<	0.20		<	0.20		<	0.20		<	0.20	
Naphthalene	25	<	0.20		<	0.20		<	0.20		<	0.20	
Toluene	1,000	<	0.20		<	0.20		<	0.20		<	0.20	
Xylenes, Total	10,000	<	0.40		<	0.40		<	0.40		<	0.40	
Semivolatile Organic Con	npounds by	y Method 8	270D (µg/L)										
Benzo(a)anthracene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Benzo(b)fluoranthene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Benzo(k)fluoranthene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Chrysene	10	<	0.040		<	0.040		<	0.040		<	0.040	
Dibenz(a,h)anthracene	10	<	0.080		<	0.080		<	0.080		<	0.080	

- ¹ SCDHEC RBSL South Carolina Department of Health and Environmental Control Risk Based Screening Level
- -a Indicates a field duplicate sample.
- -c Indicates a field deplicate sample.
 -d Indicates a rinsate blank sample.
- J/ Indicates an estimated result < PQL and > MDL.
- /J Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. LBMH Laurel Bay Military Housing

NA - Not Analyzed

NS - No Standard

BOLD font indicates the analyte was detected.

Shading indicates the concentration exceeds the SCDHEC RBSL.

Table 4 Summary of Analytical Results in Groundwater Samples - September 2015 MCAS Beaufort - Laurel Bay Beaufort, South Carolina

		000 BL 1 B 1	000 81 1 8 1	000 BL 1 B 1	000 BL 1 B 1	200 4 8 1	200 4 5 1	000 4 5 1
LBMH Area Address		282 Birch Drive	282 Birch Drive	282 Birch Drive	282 Birch Drive	388 Acorn Drive	388 Acorn Drive	388 Acorn Drive
Well ID		BEALB282MW136	BEALB282MW137	BEALB282MW138	BEALB282MW139	BEALB388MW110	BEALB388MW111	BEALB388MW112
Cample ID	SC	BEALB282MW136	BEALB282MW137	BEALB282MW138	BEALB282MW139	BEALB388MW110	BEALB388MW111	BEALB388MW112
Sample ID	RBSL	WG20150915	WG20150915	WG20150915	WG20150915	WG20150914	WG20150914	WG20150914
Lab Sample ID		QI15011-013	QI15011-016	QI15011-011	QI15011-008	QI15011-007	QI15011-005	QI15011-001
Date Collected		09/15/15	09/15/15	09/15/15	09/15/15	09/14/15	09/14/15	09/14/15
Volatile Organic Com	pounds b	y Method 8260B (µg/L)					
Benzene	5	< 0.45	< 0.45	< 0.45	< 0.45	0.75 J/	< 0.45	< 0.45
Naphthalene	25	16	< 0.96	0.14 J/	< 0.96	49 B/J	< 0.96	6.8 B/J

LBMH Area Address		391 Acorn Drive	391 Acorn Drive	391 Acorn Drive	391 Acorn Drive	398 Acorn Drive	398 Acorn Drive	398 Acorn Drive
Well ID		BEALB391MW113	BEALB391MW114	BEALB391MW115	BEALB391MW116	BEALB398MW104	BEALB398MW105	BEALB398MW106
Commis ID	SC	BEALB391MW113	BEALB391MW114	BEALB391MW115	BEALB391MW116	BEALB398MW104	BEALB398MW105	BEALB398MW106
Sample ID	RBSL	WG20150915	WG20150914	WG20150914	WG20150914	WG20150915	WG20150915	WG20150915
Lab Sample ID		QI15011-010	QI15011-006	QI15011-004	QI15011-003	QI15011-017	QI15011-015	QI15011-012
Date Collected		09/15/15	09/14/15	09/14/15	09/14/15	09/15/15	09/15/15	09/15/15
Volatile Organic Com	npounds b	y Method 8260B (µg/L)					
Benzene	5	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45
Naphthalene	25	< 0.96	0.51 BJ/J	0.63 BJ/J	19 B/J	< 0.96	0.18 J/	< 0.96

LBMH Area Address		437 Elderberry Drive	1054 Gardenia Drive					
Well ID		BEALB437MW133	BEALB437MW134	BEALB437MW135	BEALB437MW140	BEALB437MW141	BEALB437MW142	BEALB1054DMW1
Commis ID	SC	BEALB437MW133	BEALB437MW134	BEALB437MW135	BEALB437MW140	BEALB437MW141	BEALB437MW142	BEALB1054DMW1
Sample ID	RBSL	WG20150915	WG20150915	WG20150915	WG20150915	WG20150915	WG20150915	WG20150916
Lab Sample ID		QI15011-024	QI15011-021	QI15011-018	QI15011-019	QI15011-022	QI15011-020	QI17024-006
Date Collected		09/15/15	09/15/15	09/15/15	09/15/15	09/15/15	09/15/15	09/16/15
Volatile Organic Com	npounds b	y Method 8260B (µg/L)					
Benzene	5	1.5 J/	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45
Naphthalene	25	180 B/J	0.86 J/	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96

LBMH Area Address		1054 Gardenia Drive	1054 Gardenia Drive	1054 Gardenia Drive	1054 Gardenia Drive	1054 Gardenia Drive	1054 Gardenia Drive
Well ID		BEALB1054MW2	BEALB1054MW4	BEALB1054MW7	BEALB1054MW127	BEALB1054MW128	BEALB1054MW129
Commis ID	SC	BEALB1054MW2	BEALB1054MW4	BEALB1054MW7	BEALB1054MW127	BEALB1054MW128	BEALB1054MW129
Sample ID	RBSL	WG20150916	WG20150916	WG20150916	WG20150916	WG20150916	WG20150916
Lab Sample ID		QI17024-001	QI17024-009	QI17024-008	QI17024-007	QI17024-005	QI17024-003
Date Collected		09/16/15	09/16/15	09/16/15	09/16/15	09/16/15	09/16/15
Volatile Organic Com	pounds b	y Method 8260B (µg/L)				
Benzene	5	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45
Naphthalene	25	< 0.96	< 0.96	< 0.96	17	23 B/J	54 B/J

Notes:

NS - No Standard

SC RBSL - South Carolina Risk-Based Screening Level from South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, May 2001).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SC RBSL.

Flags:

B/ - Detected in an associated blank as well as in the sample.

J/ - Estimated result less than the Practical Quantitation Limit (PQL) and greater than or equal to the Method Detection Limit (MDL).

/J - Estimated detected result.

/UJ - Estimated non-detected result.

Table 5
Summary of Analytical Results in Groundwater Samples - November and December 2015
MCAS Beaufort - Laurel Bay
Beaufort, South Carolina

LBMH Area Address		119	9 Banyan D	rive	119	9 Banyan Di	rive	119	Banyan Drive	119	Banyan Drive	128	Banyan [Orive	128	Banyan Drive
Sample ID	sc	BE	ALB119MV	/01	BE	ALB119MW	02	BE	ALB119MW03	BE	ALB119MW04	BE	ALB128M\	W01	BE	ALB128MW02
Sample 1D	RBSL	٧	VG2015121	1	V	VG2015121	1	V	VG20151211	W	/G20151214	V	/G201512	14	V	/G20151214
Lab Sample ID	KDSL		QL11039-00)4	C	DL11039-00	3		L11039-001	Q	L16007-001	Q	L16007-0	10	Q	L16007-008
Date Collected			12/11/15			12/11/15			12/11/15		12/14/15		12/14/15			12/14/15
Volatile Organic Compo	ounds by I	Viethod	8260B (µ	ıg/L)												
Benzene	5	<	0.45		<	0.45		<	0.45	<	0.45		0.68	J/	<	0.45
Ethylbenzene	700		5.0		<	0.51		<	0.51	<	0.51		6.5		<	0.51
Naphthalene	25		36	/J	<	0.96		<	0.96	<	0.96		29		<	0.96
Toluene	1000	<	0.48			0.31	J/	<	0.48	<	0.48		0.42	J/	<	0.48
Xylenes, Total	10,000		3.3	J/	<	0.57		<	0.57	<	0.57		21		<	0.57
Semi-Volatiles by Meth	od 8270D	_SIM (μg/L)													
Benzo[a]anthracene	10		0.065	J/	<	0.040		<	0.040	<	0.040	<	0.040		<	0.040
Benzo[b]fluoranthene	10		0.034	J/	<	0.040		<	0.040	<	0.040	<	0.040		<	0.040
Benzo[k]fluoranthene	10	<	0.040		<	0.040		<	0.040	<	0.040	<	0.040		<	0.040
Chrysene	10		0.079	J/J	<	0.040		<	0.040	<	0.040	<	0.040		<	0.040
Dibenz[a,h]anthracene	10	<	0.080		<	0.080		<	0.080	<	0.080	<	0.080		<	0.080

LBMH Area Address		128 Banyan Drive	128 Banyan Drive	132 Banyan Drive	132 Banyan Drive	132 Banyan Drive	132 Banyan Drive
Sample ID	sc	BEALB128MW03	BEALB128MW04	BEALB132MW01	BEALB132MW02	BEALB132MW03	BEALB132MW04
Sample 1D	RBSL	WG20151214	WG20151214	WG20151215	WG20151215	WG20151215	WG20151215
Lab Sample ID	KDSL	QL16007-006	QL16007-003	QL17067-001	QL16007-020	QL16007-017	QL16007-012
Date Collected		12/14/15	12/14/15	12/15/15	12/15/15	12/15/15	12/15/15
Volatile Organic Compo	ounds by I	Method 8260B (µg/L)					
Benzene	5	< 0.45	< 0.45	7.9	0.50 J/	< 0.45	< 0.45
Ethylbenzene	700	< 0.51	< 0.51	42	< 0.51	< 0.51	< 0.51
Naphthalene	25	< 0.96	< 0.96	150 /J	2.8 J/	< 0.96	0.47 J/
Toluene	1000	< 0.48	7.4	< 0.48	< 0.48	< 0.48	< 0.48
Xylenes, Total	10,000	< 0.57	< 0.57	39	< 0.57	< 0.57	< 0.57
Semi-Volatiles by Meth	od 8270D)_SIM (µg/L)					
Benzo[a]anthracene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Benzo[b]fluoranthene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Benzo[k]fluoranthene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Chrysene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Dibenz[a,h]anthracene	10	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080

Table 5
Summary of Analytical Results in Groundwater Samples - November and December 2015
MCAS Beaufort - Laurel Bay
Beaufort, South Carolina

LBMH Area Address		13	35 Birch Dr	ive	1:	35 Birch Drive	13	5 Birch Dr	ive	13	5 Birch Drive	148 La	urel Bay Bo	ulevard	148 Lau	ırel Bay Bo	oulevard
Commis ID	sc	BE	ALB135MV	V01	BE	ALB135MW02	BE	ALB135MV	V03	BE	ALB135MW04	BE	ALB148MW	/01	BE	ALB148MV	/ 02
Sample ID		V	VG201512 ²	15	١	VG20151214	V	VG201512	14	V	/G20151214	\	NG2015121	6	V	/G2015121	6
Lab Sample ID	RBSL	(2L16007-0	11		QL16007-007	C	L16007-0)4	C	L16007-009	(QL17067-01	1	Q	L17067-00)8
Date Collected			12/15/15			12/14/15		12/14/15			12/14/15		12/16/15			12/16/15	
Volatile Organic Compo	ounds by I	Viethod	8260B (µ	ıg/L)								•					
Benzene	5	<	0.45		<	0.45	<	0.45		<	0.45	<	0.45		<	0.45	
Ethylbenzene	700		3.4	J/	<	0.51	<	0.51		<	0.51		13			0.60	J/
Naphthalene	25		79		<	0.96	<	0.96		<	0.96		110	/J		48	/J
Toluene	1000	<	0.48		<	0.48	<	0.48		<	0.48	<	0.48			0.24	J/
Xylenes, Total	10,000		0.36	J/	<	0.57	<	0.57		<	0.57		8.9		<	0.57	
Semi-Volatiles by Meth	od 8270D	_SIM (μg/L)									•					
Benzo[a]anthracene	10	<	0.040		<	0.040	<	0.040		<	0.040		0.045	J/	<	0.040	
Benzo[b]fluoranthene	10	<	0.040		<	0.040	<	0.040		<	0.040	<	0.040		<	0.040	
Benzo[k]fluoranthene	10	<	0.040		<	0.040	<	0.040		<	0.040	<	0.040		<	0.040	
Chrysene	10	<	0.040		<	0.040	<	0.040		<	0.040		0.043	J/	<	0.040	
Dibenz[a,h]anthracene	10	<	0.080		<	0.080	<	0.080	/UJ	<	0.080	<	0.080		<	0.080	

LBMH Area Address		148 Lau	irel Bay Bo	ulevard	148 La	urel Bay Boulevard	156 Lau	ırel Bay Boulevard	156 Lau	urel Bay Boulevard	156 Lau	urel Bay Boulevard	156 Lau	ırel Bay Boulevard
Sample ID	SC	BEA	ALB148MW	/03	BE	ALB148MW04	BE	ALB156MW01	BE	ALB156MW02	BE	ALB156MW03	BE	ALB156MW04
Sample 1D	RBSL	W	/G2015121	6	V	VG20151215	V	/G20151215	V	VG20151215	V	VG20151215	V	/G20151215
Lab Sample ID	KDSL	Q	L17067-00	15		ΣL17067-003	Q	L16007-018	C	L16007-013	Q	L16007-015	Q	L16007-014
Date Collected			12/16/15			12/15/15		12/15/15		12/15/15		12/15/15		12/15/15
Volatile Organic Compo	ounds by I	Vlethod	8260B (µ	g/L)										
Benzene	5	<	0.45		<	0.45	<	0.45	<	0.45	<	0.45	<	0.45
Ethylbenzene	700		0.56	J/	<	0.51		9.2	<	0.51	<	0.51	<	0.51
Naphthalene	25		6.6	/J	<	0.96		72	<	0.96	<	0.96	<	0.96
Toluene	1000	<	0.48		<	0.48	<	0.48	<	0.48	<	0.48	<	0.48
Xylenes, Total	10,000	<	0.57		<	0.57		25	<	0.57	<	0.57	<	0.57
Semi-Volatiles by Meth	od 8270D	_SIM (_l	ug/L)											
Benzo[a]anthracene	10	<	0.040		<	0.040	<	0.20	<	0.040	<	0.040	<	0.040
Benzo[b]fluoranthene	10	<	0.040		<	0.040	<	0.20	<	0.040	<	0.040	<	0.040
Benzo[k]fluoranthene	10	<	0.040		<	0.040	<	0.20	<	0.040	<	0.040	<	0.040
Chrysene	10	<	0.040		<	0.040	<	0.20	<	0.040	<	0.040	<	0.040
Dibenz[a,h]anthracene	10	<	0.080		<	0.080	<	0.40	<	0.080	<	0.080	<	0.080

Table 5
Summary of Analytical Results in Groundwater Samples - November and December 2015
MCAS Beaufort - Laurel Bay
Beaufort, South Carolina

LBMH Area Address		156 Laurel Bay Boulevard	1033 Foxglove Street	1033 Foxglove Street	1033 Foxglove Street	1033 Foxglove Street	1055 Gardenia Drive
Samula ID	sc	BEALB156MW05	BEALB1033MW01	BEALB1033MW02	BEALB1033MW03	BEALB1033MW04	BEALB1055MW01
Sample ID		WG20151215	WG20151216	WG20151216	WG20151216	WG20151215	WG20151216
Lab Sample ID	RBSL	QL16007-016	QL17067-006	QL17067-004	QL17067-009	QL16007-021	QL17067-018
Date Collected		12/15/15	12/16/15	12/16/15	12/16/15	12/15/15	12/16/15
Volatile Organic Compo	ounds by	Method 8260B (µg/L)					
Benzene	5	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45
Ethylbenzene	700	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	3.6 J/
Naphthalene	25	< 0.96	1.1 J/J	< 0.96	0.30 J/J	0.71 J/	39 /J
Toluene	1000	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48
Xylenes, Total	10,000	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	0.32 J/
Semi-Volatiles by Meth	od 8270E)_SIM (µg/L)					
Benzo[a]anthracene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Benzo[b]fluoranthene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Benzo[k]fluoranthene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Chrysene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Dibenz[a,h]anthracene	10	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080

LBMH Area Address		1055 Gardenia Drive	1055 Gardenia Drive	1055 Gardenia Drive	1059 Gardenia Drive	1059 Gardenia Drive	1059 Gardenia Drive
Sample ID	sc	BEALB1055MW02	BEALB1055MW03	BEALB1055MW04	BEALB1059MW01	BEALB1059MW02	BEALB1059MW03
Sample 1D	RBSL	WG20151216	WG20151216	WG20151216	WG20151216	WG20151216	WG20151216
Lab Sample ID	KDSL	QL17067-017	QL17067-015	QL17067-013	QL17067-010	QL17067-012	QL17067-014
Date Collected		12/16/15	12/16/15	12/16/15	12/16/15	12/16/15	12/16/15
Volatile Organic Compo	ounds by I	Method 8260B (µg/L)					
Benzene	5	< 0.45	< 0.45	< 0.45	1.8 J/	< 0.45	< 0.45
Ethylbenzene	700	< 0.51	< 0.51	< 0.51	8.8	2.7 J/	< 0.51
Naphthalene	25	< 0.96	< 0.96	< 0.96	39 /J	10 /J	< 0.96
Toluene	1000	< 0.48	< 0.48	< 0.48	3.8 J/	< 0.48	< 0.48
Xylenes, Total	10,000	< 0.57	< 0.57	< 0.57	39	< 0.57	< 0.57
Semi-Volatiles by Meth	od 8270D	_SIM (µg/L)					
Benzo[a]anthracene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Benzo[b]fluoranthene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Benzo[k]fluoranthene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Chrysene	10	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Dibenz[a,h]anthracene	10	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080	< 0.080

Table 5
Summary of Analytical Results in Groundwater Samples - November and December 2015
MCAS Beaufort - Laurel Bay
Beaufort, South Carolina

LBMH Area Address		1059	Gardenia Drive	1168	3 Jasmine	Street	1168	3 Jasmine Street	116	3 Jasmine Street	1168	Jasmine Street
Commis ID	00	BEA	LB1059MW04	BEA	ALB1168M	W01	BE	ALB1168MW02	BE	ALB1168MW03	BEA	LB1168MW04
Sample ID	SC	W	/G20151216	V	VG201512	17	\	VG20151217	١ ١	VG20151217	W	/G20151217
Lab Sample ID	RBSL	Q	L17067-016	C	2L17067-0	21		L17067-019	(QL17067-020	Q	L17067-023
Date Collected			12/16/15		12/17/15			12/17/15		12/17/15		12/17/15
Volatile Organic Compo	ounds by I	Viethod	8260B (µg/L)									
Benzene	5	<	0.45	<	0.45		<	0.45	<	0.45	<	0.45
Ethylbenzene	700	<	0.51		0.71	J/J	<	0.51	<	0.51	<	0.51
Naphthalene	25	<	0.96		1.9	J/J	<	0.96	<	0.96	<	0.96
Toluene	1000	<	0.48	<	0.48		<	0.48	<	0.48	<	0.48
Xylenes, Total	10,000	<	0.57	<	0.57		<	0.57	<	0.57	<	0.57
Semi-Volatiles by Meth	od 8270D	_SIM (µ	ıg/L)									
Benzo[a]anthracene	10	<	0.040	<	0.040		<	0.040	<	0.040	<	0.040
Benzo[b]fluoranthene	10	<	0.040	<	0.040		<	0.040	<	0.040	<	0.040
Benzo[k]fluoranthene	10	<	0.040	<	0.040		<	0.040	<	0.040	<	0.040
Chrysene	10	<	0.040	<	0.040		<	0.040	<	0.040	<	0.040
Dibenz[a,h]anthracene	10	<	0.080	<	0.080		<	0.080	<	0.080	<	0.080

Notes:

SC RBSL - South Carolina Risk-Based Screening Level from South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, May 2015) Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SC RBSL.

Flags:

- J/ Estimated result less than the Practical Quantitation Limit (PQL) and greater than or equal to the Method Detection Limit (MDL).
- /J Estimated detected result.
- /UJ Estimated non-detected result.

Appendix F Regulatory Correspondence

BOARD: Paul C. Aughtry, III Chairman Edwin H. Cooper, I

Secretary

Edwin H. Cooper, III Vice Chairman Steven G. Kisner

BOARD: Henry C. Scott

M. David Mitchell, MD

Glenn A. McCall

Coleman F. Buckhouse, MD

C. Earl Hunter, Commissioner
Promoting and protecting the health of the public and the environment

10 September 2008

Beaufort Military Complex Family Housing ATTN: Kyle Broadfoot 1510 Laurel Bay Blvd. Beaufort, SC 29906

Re:

MCAS - Laurel Bay Housing - 391 Acorn

Site ID # 04048

UST Closure Reports received 31 January 2008

Beaufort County

Dear Mr. Broadfoot:

The purpose of this letter is to verify a release of fuel oil at the referenced residence. According to information received by the Department, the source of the release is from past onsite use of fuel oil USTs. To date, initial activities by the facility have included tank removal and soil sampling. Based on the information contained in the closure report, a potential violation of the South Carolina Pollution Control Act has occurred in that there has been an unauthorized release of petroleum to the environment.

Additional assessment activities are required for this site. Specifically the Department requests that a groundwater sample be collected from this site. Please note, the Department approved a groundwater sampling proposal for Laurel Bay submitted by MCAS under separate cover dated 16 June 2008.

Should you have any questions, please contact me at 803-898-3553 (office phone), 803-898-2893 (fax) or bishopma@dhec.sc.gov.

Sincerely,

Michael Bishop, Hydrogeologist Groundwater Quality Section

Bureau of Water

cc:

Region 8 District EQC (via pdf)

MCAS, Commanding Officer, Attention: S-4 NREAO (William Drawdy) (via pdf)

Technical File (via pdf)

C. Earl Hunter, Commissioner Promoting and protecting the health of the public and the environment.

30 December 2008

Commanding Officer

ATTN: S-4 NREAO (Craig Ehde)

MCAS

PO Box 55001

Beaufort, SC 29904-5001

Re:

MCAS - Laurel Bay Housing - 391 Acorn

Site ID # 04048

Groundwater Sampling Results received 6 November 2008

Beaufort County

Dear Mr. Ehde:

The Department has completed review of the referenced document. The submitted analytical results indicate that chemicals of concern are above established Risk-Based Screening Levels and additional investigative and/or remedial actions are warranted.

The Department recommends that a permanent groundwater monitoring well be installed to verify the results of the temporary groundwater monitoring well. Please submit the proposal to conduct the necessary assessment and/or remedial measures at this site no later than 28 February 2009.

Should you have any questions, please contact me at 803-896-4179 (office phone), 803-896-6245 (fax) or cookejt@dhec.sc.gov.

Sincerely,

Jan T. Cooke, Hydrogeologist

AST Petroleum Restoration

& Site Environmental Investigations Section

Land Revitalization Division

Bureau of Land and Waste Management

SC Dept. of Health & Environmental Control

Region 8 District EQC CC:

Tri-Command Communities; Attn: Mr. Robert Bible; 600 Laurel Bay Road Beaufort, SC

29906

Technical File

Received 4/14/11

BOARD:
Paul C. Aughtry, III
Chairman
Edwin H. Cooper, III
Vice Chairman
Steven G. Kisner
Secretary

BOARD: Henry C. Scott

M. David Mitchell, MD

Glenn A. McCall

Coleman F. Buckhouse, MD

C. Earl Hunter, Commissioner

Promoting and protecting the health of the public and the environment

Bureau of Land and Waste Management Division of Waste Management

April 6, 2011

Commanding Officer
Attention: NREAO Mr. William A. Drawdy
United States Marine Corps Air Station
Post Office Box 55001
Beaufort, South Carolina 29904-5001

Facility: Marine Corps Air Station, Beaufort

EPA ID #: SC1 750 216 169

RE: Review

Report of Findings for Laurel Bay Military Housing Area

Dated July 2010 and

Well Installation and Sampling Work Plan for

Laurel Bay Military Housing

Dated March 2011

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Report of Findings for Laurel Bay Military Housing Area on July 23, 2010 and Addendum to Well Installation and Sampling Work Plan for Laurel Bay Military Housing on March 4, 2011. Heating oil stored in underground storage tanks (USTs) historically heated homes in Laurel Bay. The USTs are no longer used for storing heating oil, and MCAS Beaufort is currently removing these USTs and evaluating their integrity. This Report of Findings and Well Installation and Sampling Work Plan document the groundwater conditions following limited soil sampling and temporary monitoring wells showed evidence of groundwater contamination related to some of the heating oil USTs.

Based on this review, the Department has generated the attached memorandum by Michael W. Danielsen from the Federal Facilities Groundwater Section. The response to the Department's comments may be addressed by submitting revised pages to be inserted into the original document, or by submitting another document. If new or revised pages

are submitted, please indicate whether each submitted page is a revision to an existing page in the original document or a new page not contained in the original document. Each revised page should be coded. For example, 32(R-7/30/07) would be page 32, revised 7/30/07. In addition to revisions, please provide a summary of the comment responses and revision pages.

Please note that the Department's review is based on available information provided by the MCAS. Any information found to be contradictory to this decision might require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions regarding this issue, please contact me at (803) 896-6675 or petruslb@dhec.sc.gov.

Sincerely,

La Blut

Laurel B. Petrus, Environmental Engineer Associate Corrective Action Engineering Section

Attachments

cc: Michael W. Danielsen, Hydrogeologist

Russell Berry, EQC Region 8 Dan Owens, NAVFAC SE

Federal Facilities Groundwater Section 2600 Bull Street Columbia, SC 29201 Telephone (803) 896-4000 Fax (803) 896-4002

Muso

MEMORANDUM

TO:

Laurel Petrus, Environmental Engineer Associate

Corrective Action Engineering Section

Division of Waste Management

Bureau of Land and Waste Management

FROM:

Michael W. Danielsen, Hydrogeologist Federal Facilities Groundwater Section

Division of Waste Management

Bureau of Land and Waste Management

DATE:

April 5, 2011

RE:

Marine Corps Air Station (MCAS)

Beaufort, South Carolina

SC1 750 216 169

Report of Findings for Laurel Bay Military Housing Area

Dated July 2010 (Received July 23, 2010)

Addendum to Well Installation and Sampling Work Plan for

Laurel Bay Military Housing Area

Dated March 2011 (Received March 4, 2011)

The above referenced Findings Report provides information from the installation of 35 monitoring wells as part of an ongoing effort to remove underground residential heating oil tanks (USTs) from the Laurel Bay Military Housing Area.

The Addendum to Well Installation and Sampling Work Plan provides the proposed well installation locations and sampling recommended in the Finding Report.

The documents referenced above have been reviewed with respect to the S.C. Pollution Control Act 48-1-10 and the S.C. Hazardous Waste Management Act, and other appropriate guidance documents.

Please see the attached comments.

CC: BLWM file # 50500

DDII0107.MWD

Page I of 5

Report of Findings for Laurel Bay Military Housing Area and Addendum to Well Installation and Sampling Work Plan for Laurel Bay Military Housing Area MCAS

Federal Facilities Groundwater Section Comments prepared by Michael W. Danielsen April 5, 2011

Report of Findings for Laurel Bay Military Housing Area

1. Page 11 Section 6.0, Recommendations

This section recommends no further action (NFA), annual monitoring, or expansion of the monitoring well network as follows:

NFA for:

- 201 Balsam Street,
- 390 Acorn Drive,
- 391 Acorn Drive,
- 299 Birch Lane.
- 1118 Iris Lane,

Annual groundwater monitoring for benzene, toluene, ethylene, xylene (BTEX), naphthalene, and polyaromatic hydrocarbons (PAH) at:

- 398 Acorn Drive,
- 388 Acorn Drive,
- 441 Elderberry Lane,
- 282 Birch Road,
- 1054 Gardenia Drive,

Expansion of the monitoring well networks and performance of annual groundwater monitoring for 1-methylnapthalene, 2-methylnapthalene, and/or naphthalene at the following:

- 437 Elderberry Lane- Install three additional monitoring wells downgradient of MW133.
- 1472 Cardinal Lane- Install three additional monitoring wells sidegradient and downgradient of MW130 to bound the contaminant plume.

In addition, all new monitoring wells will be sampled for BTEX, naphthalene, and PAH.

BOARD: Paul C. Aughtry, III Chairman Edwin H. Cooper, III Vice Chairman Steven G. Kisner

Secretary

C. Earl Hunter, Commissioner

Promoting and protecting the health of the public and the environment

50500

BOARD: Henry C. Scott

M. David Mitchell, MD

Glenn A. McCall

Coleman F. Buckhouse, MD

Bureau of Land and Waste Management Division of Waste Management

July 5, 2012

Commanding Officer
Attention: NREAO Mr. William A. Drawdy
United States Marine Corps Air Station
Post Office Box 55001
Beaufort, South Carolina 29904-5001

Facility: Marine Corps Air Station, Beaufort

EPA ID #: SC1 750 216 169

RE: Review

Draft Report of Findings for Laurel Bay Military Housing Investigation of Potential Impacts to Groundwater from Former Heating Oil Underground Storage Tanks, Dated June 2012

282 Birch Road 388 and 398 Acom Drive 437 and 441 Elderberry Drive 1472 Cardinal Lane 1054 Gardenia Drive

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Draft Report of Findings for Laurel Bay Military Housing Area on June 18, 2012. Heating oil stored in underground storage tanks (USTs) historically heated homes in Laurel Bay. The USTs are no longer used for storing heating oil, and MCAS Beaufort is currently removing these USTs and evaluating their integrity. This Report of Findings documents the installation of additional permanent monitoring wells and updates the groundwater conditions at seven homes. Limited soil sampling, permanent and temporary monitoring wells had previously shown evidence of groundwater contamination related to the heating oil USTs at the homes. The Department agrees with the recommendation to continue annual monitoring of these wells and the wells located at 391 Acom Drive.

Based on this review, the Department has generated the attached memorandum by Joe Bowers from the Federal Facilities Groundwater Section. The response to the Department's comments may be addressed by submitting revised pages to be inserted into the original document, or by submitting another document. If new or revised pages are submitted, please indicate whether each submitted page is a revision to an existing page in the original document or a new page not contained in the original document. Each revised page should be coded. For example, 32(R-7/30/07) would be page 32, revised 7/30/07. In addition to revisions, please provide a summary of the comment responses and revision pages.

Please note that the Department's review is based on available information provided by the MCAS. Any information found to be contradictory to this decision might require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions regarding this issue, please contact me at (803) 896-6675 or petruslb@dhec.sc.gov.

Sincerely,

THE BRY

Laurel B. Petrus, Environmental Engineer Associate Corrective Action Engineering Section

Attachments

cc:

Joe Bowers, FFGS Russell Berry, EQC Region 8 Dan Owens, NAVFAC SE Stephanie Warino, Tetra Tech

C. Eurl Hunter, Commissioner

Promoting and protecting the health of the public and the environment

MEMORANDUM

TO: Laurel Petrus, Environmental Engineer Associate

Corrective Action Engineering Section

Division of Waste Management

Bureau of Land and Waste Management

FROM:

Joe B. Bowers, P.G., Manager

Federal Facilities Groundwater Section

Division of Hydrogeology

Bureau of Land and Waste Management

DATE:

July 5, 2012

RE:

Marine Corps Air Station (MCAS)

SC1 750 216 169 Beaufort County

Review of the <u>Report of Findings for November 2011 Laurel Bay Military</u> Housing Area, Investigation of Potential Impacts to Groundwater – Former

Heating Oil Underground Storage Tanks, dated June 2012

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Report of Findings for Laurel Bay Military Housing Area on June 18, 2012. Heating oil stored in underground storage tanks (USTs) historically heated homes in Laurel Bay. The USTs are no longer used for storing heating oil, and MCAS Beaufort is currently removing these USTs and evaluating their integrity. This Report of Findings documents the installation of additional permanent monitoring wells and collection of groundwater samples from monitoring wells located adjacent to homes in Laurel Bay.

Based on review of this document, the Federal Facilities Groundwater Section did not generate any comments. The MCAS should proceed with the proposals for groundwater monitoring as outlined in this report.

Should you have any questions regarding this review, you may contact me at (803) 896-4024 or bowersjb@dhec.sc.gov.

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

Division of Waste Management Bureau of Land and Waste Management

February 22, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Approval and Concurrence with Draft Final Groundwater Monitoring Report-December 2015

Laurel Bay Military Housing Area Multiple Properties

Dated December 2015

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received groundwater data in the above referenced Groundwater Monitoring Report for the addresses attached. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

Per the Department's request, groundwater samples were collected from the attached referenced addresses. The Department reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

Laurel Petrus

RCRA Federal Facilities Section

Tel Cox

Attachment: Specific Property Recommendations

Cc: Russell Berry, EQC Region 8 (via email)

Shawn Dolan, Resolution Consultants (via email) Bryan Beck, NAVFAC MIDLANT (via email)

Diyan beek, MATTAE INDEANT (

Craig Ehde (via email)

Draft Final Groundwater Monitoring Report

437 Elderberry	
157 Elderbetty	
1054 Gardenia Drive	
ion recommendation and concurrance	
398 Acorn	
	1054 Gardenia Drive

^{**} Resume when demolition is complete